Intel® C++ Compiler
User's Guide

Copyright© 1996-2002 Intel Corporation
All rights reserved
Issued in USA

Document No. CL-600-06

Table of Contents

ABOUT INTEL(R) C++ COMPILER ...t 9
Welcome to the Intel® C++ COMPIIEToceviiiiiiei e 9
What's NeW in ThiS REICASE.uuiiiiiiiiiiiiiiiieie ittt eeeneee 9
Features and BeNETIIScoi e 10
Product Webh Site and SUPPOITt eeeeeeeeees 10
SYStEM REQUITEMENTS ... 11
FLEXIM* EleCtroniC LICENSINGcooeeiieeeeeeeeee e 11
ADOUL ThiS DOCUMENT. ...ttt e e e e e e e e e eeaeas 12

HOW t0 USE ThiS DOCUIMENTeeiiiiiiiiiiiititie ettt ettt e e e ettt e e e e e e e e sabbe e e e e e e e e e nnes 12
Y= 1= L0 To I U] o] o= 110 1S SPERR 14
1T =V 1 1= 16

COMPILER OPTIONS QUICK REFERENCE GUIDEScciiiiiiiieeeeeie, 17
Options Quick Reference Guides OVEIVIEWccoovviiiiiiiiiiiiieeee e 17
New OPLioNS IN VEISION 6.0ccooiiieieeeeee e 18
AlphabetiCal LiStINGcoovuiiiiiiiii et e e 21

Compiler Options QUICK RefErenCe GUITEuviiiiiiiiiiiiiie e 21
Functional Groups LiStiNG...........uuuiiiiiiieieii it e et eaaeeeeeens 30
Customizing Compilation ProCeSS OPLIONSc.uveieiiiiiiieiiiiie ittt 30
Alternate TOOIS AN LOCALIONSveeiiiiiieeiiiiteeiit ettt e et e e b e e e bb e e e e e 30
PreproCeSSING OPLIONSeiiiiiieiiiiiiie ettt e e e ettt e e e e e s e e bbe et ee e e e s aasaebeeeeaeeaaanbbeeeeeaeeeasbneeeaaeeas 30
Controlling ComMPIlAtION FIOWcoiiiiiiiiiii e e et as 30
Controlling CompPilation OULPUL...........eeeiiiiee ettt e e e e e st e e e e e e et e e e e e e e e annereeeas 31
[D1=T o]0 oo 10T T @ 011 (o] o F- PP TRPPPRP 31
DIGgNOSC MESSAGES ..o euveeeeiiteeee ittt e itttk e e ettt e et e s bt e e st b et e e e bb et e s asne e e e e bbe e e s anbeeeesnneeanreeenan 32
Language Conformance OPLIONSccoiuiiiiiiiiieeiiiie et e s e e saneee s 32
CONTOIMEANCE OPLIONS.eieeiiiie ettt ettt e et e e b e e e ettt e e s et e e st e e e e aabr e e e neeesneneeeas 32
Application Performance Optimization OPLIONSooouiiiiiiiieeiiiiiee e 32
OPtMIZAtION-1EVEI OPLIONSeiiiiiiieiit ettt ettt e et bt e e st e e s anneesnereeens 32
Floating-point Arithmetic PreCISIONooouiuiiiiiiii e 33
Processor Dispatch SUPPOrt (IA-32 ONIY).....coueeiiiiiieee et 35
Interprocedural OPtMIZALIONS..........vii it e s e e e ar e e 36
Profile-guided OptIMIZAtIONS.uuiiiiiiee e et e e e e et e e e e e e srneeaaeeeas 36
High-level Language OPtimMiZAtiONSeeiiiriiieiiiiie ettt e et eeesannee e 37
AV/=Te (o] (2= 11 (o] g W @] o1 o] o T TP PPTOP P PUPPPRRN 37
OPLIMIZALION REPOITS ...ttt e e e s ettt e e e e e e st b e et e e e e e e s abbneree s e e anneneeeas 38
Compiler Options Cross-Reference for Windows* and LinUX*cc.ccoeeeeeeiiviiiieninnnns 39
Compiler Options CroSS REFEIENCEcoiuiiiiiiiiiii e 39

GETTING STARTED WITH THE INTEL(R) C++ COMPILER..........ovvviiiiiieieee. 43

INVOKING the COMPIIET ..o e e 43
Invoking the Compiler from the Command Line.............coiiiiiiiiiiiiiii e 43
Invoking the Compiler from the Command Line with make.............cc.ooooiiiiiiiinnnn. 44
(70 g o] o111 g 1] 01U 1][45
Default Behavior of the COMPIIEr.........ooooiiiiiii s 46
Default CoOMPIIEr OPLIONSooiiiiiie ittt e et e et e e e e sbeeeeesbneeaas 46
Default Behavior of the COMPIIET ..o e 48
COoMPIIALION PRESESoiiiiiiiii ettt nb e 48
CUSTOMIZING COMPILATION ENVIRONMENTciiiiiiiiiieeieeeeeeee e, 50
Customizing the Compilation ENVIroONMeNt............ooooviiiiii, 50
ENVIronmMent Variablesiiiiiii e 50
(07001110 [UT =1 10 o TN 1= 51
RESPONSE FIIES e e e e e e e e aaeees 52
T T[T L 1 = 53
CUSTOMIZING COMPILATION PROCESS ... 54
Customizing Compilation ProCess OVEIVIEWceveeeeiiiiiiiiieeeeeeeeeeeitiee e e e 54
Specifying Alternate Tools and PathsS...............uuuuiiiiiiiiiiiiiiiiii e 54
e =T o] o Tod=TST=] 1oV PR 55
PreproCeSSING OVEIVIEWcouuiiiiiiiiiie ittt sie ettt ettt et e e s bbbt e e s sbbe e e s asbb e e e s snbeeeessanneeeas 55
PreproCeSSING ONIYooii et e e e e e e bbb e e e e e e e e anabereeeeeaaaa 56
Searching for Include Files............oo 56
DEfiNING IMBCTOS ...ttt ettt ettt e e e bbbt e e e sttt e e s sabe e e e s sabeeeessabeeeaa 57
(0] 10101110 PSP PPPUPPPPPPPPPPPPP 60
COMPIIALION OVEIVIEW ...ttt ettt ettt ettt e st bt e e sabb et e e sbbe e e e snbbeeeesneeas 60
Compilation OPLIONSccviiiiiiee e 60
ControlliNg COMPITALION.ot e e e e e st e e e e e e e s bbb eeee s e e anneneeeas 60
MONITOrING DA SENGSeeeeiitiieeitii ettt ettt e e e et e e st et e e sneeeabreeenan 61
Assembly File LiSting EXAMPIE ... 62
LTI 63
DEDUGGING. e 64
Debugging OPLIONS OVEIVIEWciuuiiiiiiiiiie ittt ettt ettt ettt et e et e e s snbee e e s anneee s 64
Preparing for DEbUGQINGcooo oo 65
Support for Symbolic DEDUGGINGoveeiiiiiiie e 65
Parsing for SYNTAX ONIY s e s a e e s e e e e e e e e 65
LANGUAGE CONFORMANCE ...t 66

Conformance t0 the C StANUAIUcc.oeeieee et ens 66

Conformance to the CH+ STANUAIT........c.uviviieieiie e et e e enee 68

OPTIMIZATIONS Lo e e e et e e e e e e e e eaa e e eaneeees 69
OPLIMIZALION LEVEISceeiiiiiei et e e e e e e e e e e s 69
Setting OPtIMIZAtioN LEVEIS. ... e e e e e e e e e e e 69
Restricting OPLIMIZALIONSccvveiieieirie e 70
Floating-point OPptiMIZAtiONSoeiiiieiiiiiee e e e e e e e e e eeeeneees 71
Restricting Floating-point Arithmetic PreCiSIONc..oioiiiiiiiiiiiee et 71
Processor Dispatch Extensions Support (IA-32 ONlY)ueeveeiiiiiiiiiiiiiees 72
Targeting a Processor and EXtENSIONS SUPPOITcoiuviieiiiiiieiiiiiee et 72
Targeting @ ProCesSOr (IA-32 ONIY)eeiiiiiiiiiieeie et e e e e eeebeee s 72
Exclusive Specialized Code (IA-32 ONIY) ...ooiiiiiiiiiiiiiie et 73
Specialized Code With -ax{i|M|K|W} ... 73
Combining Processor Target and Dispatch Options (IA-32 0Nly)oovoiiiiiiiieiiniiiiieeeeeeee 75
Interprocedural OPLIMIZATIONS oo e 76
IMUIIFIIE TPO .o e et e e e e e e e e e e e e e e s st e e e e e e e sesnnsanaeeeeeesannnntanneaeeeeanns 76
MUILITIE TP O OVEIVIEWeeeiieie ettt ettt e e e ekttt e e e e e e bbbt e e e e e e e e anbbbeeeeaeensnbneeaaaeeas 76
Compilation with Real ODJECT FIlESeuiiiiiiiiiiiie e e eaee s 77
Creating a Multifile IPO EXECULADIEcuviiiiii e 78
Creating a Multifile IPO Executable Using a Project Makefile.............ccoiiiiiiiiiiiee e 79
Creating a Library from IPO ODJECES.......coiuiiiiiiiiie it 79
Analyzing the Effects of MUIIfile IPOoooiiiii e 80
Using -ip With -QOPtioN SPECITIEISciiiiiiiii i 80
INline EXPansion Of FUNLIONSooiiii et a e 81
Controlling Inline EXpansion Of USer FUNCHONSccuuiiiiiiaii et 81
Criteria for Inline FUNCHON EXPANSIONuviiiiiiiieiiiiee ettt e as 82
Profile-guided OptimIZatiONScooviiiii i 83
Profile-guided OptimizatioNS OVEIVIEWcoiiiiiiiiiiiiieie ettt a e e e e e e 83
Profile-guided Optimizations Methodologycocueiiiiiiiieiiiiiee e 83
o] (o ©1 @ I @ o1 1 84
Example of Profile-guided OptimiZationcc.cooiiiiiiiiiiie et 84
PGO ENVIironmMent VariableScooiiiii ittt 85
(T Ted T T o =T I PSSR 86
Function Order List Usage GUIAEINESooiiiiiiiiii e 86
Utilities for Profile-guided OptimMIZatioNncooiiiiiiiiie e 88
PGO API: Profile Information Generation SUPPOI..........cooooiiii i 89
PGO AP SUPPOIT OVEIVIEWoiiiiiiiiiiiiee ettt et e e e e ettt e e e e s e ab bt e e e e e e e e anbbbe e e e e e e e s annbeeeeeas 89
Dumping Profile INFOrMELIONooiriiiiiiiie e eir e 89
Resetting the Dynamic Profile COUNLEISciiiiiiiiiiii e 90
Dumping and Resetting Profile INfOrmationcoooiiiiiiiiie e 90
Interval Profile DUMIPINGcooiieiieiiiie et e e et e e b et e e 90
ENVIroNmMEeNnt Variableooo it a e 91
High-level Language Optimizations (HLO)covviiiiiiiiiiiiiin 92
HLO OVEIVIEW ...ttt ettt ettt e ekt e e e et e e e ea et e e e san et e e rar e et e e sar e e e e anreeeenaneeena 92

(oo o I I = U0 1S3 (0] 3. = o = PSSP 92

(oTo o 0 o] {0 | 11T [P O PTRTTRPRRP 93
Absence of Loop-carried Memory Dependency with IVDEP Directivecccocceeieeeiiinnnen. 93
ParalleliZation............ooooii e 94
Parallelization OPtiONS OVEIVIEWcoiuuiiiiiiiaeeis ittt e e e e et ee e e e e e s eibabe e e e e e e e s snbeeeeeaaeeaaannes 94
AULO ParalleliZAtION.........cooiiiiiii e 94
AUtO-ParalleliZer's DIAgNOSTICuiiiieiiiiiiiiire e e et e e e e e e e e e e e e e e e s satbaraeaeeessaasnsraaeeessnnnes 95
Threshold for AUtO-paralleliZationcoii e e e e e e e e 95
Parallelization With OPENMP™........oo et e s rnaeee s 95
OPeNnNMP* StaNAArd OPLIONSceiieiiiieiii ettt e et e e e e e e s s e e e e e e s e s abbb e e e e e e e aaanbbeeeeeeeaeaasneeeas 96
OpenMP* Run Time Library ROULINESoooiiiiiiiiii e 98

Intel EXENSIONS 10 OPENMP™ ...ttt e skt st e et e e et e e nnees 99
Vectorization (IA-32 ONIY) ..o e 101
VECTONZATION OVEIVIEWeieiiiiiiei ettt ettt e e e ettt e e e e e e e e bbb e e e e e e e s e e annbbeeeeaaeeaaannes 101
Vectorization Key Programming GUIAElINESooiiiiiiiiiiiiiii e 101
D=1 e= W BT o 1T 0o (=] o [od TP PUPT PR UORRPPRPPTN 102

[To] o J 0] 4 11 (Vo1 £ TP PP PRPPPPTPPPPPPRPP 103
(o To] o I =01 4 ©2o] oo [1 i o] o F- S PP PEPT PR UUTRPPRPPT 104
TYPES Of LOOPS VECIOMNZEA.cciiiiiiie ittt e e ee e e 105
StHPMINING ANA CIEANUPeii it ettt e e e enees 106
Statements in the LOOP BOAYuuiiiiiiiiie e 107
Language SUPPOrt and DIFECLVES.......ccoiiiiiiiiiiie ettt 107
VECTONZAtION EXAMPIES ... ittt e e e e e e b e e e e e e e e e aanneees 112
Loop Interchange and Subscripts: MatriX MUItIPIYcoocviiiiiiiii e, 115

I] 0 116
LiDrarieS OVEIVIEW ... 116
1= =T | I o =T = P 116
1 C=] (OIS g F= g =To [I o =T =T 117
Managing LIBrari@s. ... 118
DIAGNOSTICS AND MESSAGES.......co o 119
DiagnOStIC OVEIVIEWcciiieiiiiiii e ettt e e e e e e e e e e et e e e e e e e e e e tbba e eeeeeees 119
(=g Lo [UF= To =R DT Vo Lo] o PP STPRP 119
Suppressing Warning Messages with lint COmMMENtS...........cooiiiiiiiiiiie e 119
Suppressing Warning Messages or Enabling Remarks............ccccccc, 120
Limiting the Number of Errors REPOIEdueviiiiiiiiiiiiic e 120
REMAIK MESSATES ... s s e e e e e s e e e e e s e e e e e e e e e e e e e e e e e e e an e e 120
REFERENCE INFORMATION ...t 121
(O] 001 o1 [T ol I 41 121
(©0] 00T o111 g I o 111 £ TP PU PR 121

INTEI CAt KEY FHlES .. 122

Key Files Summary for IA-32 COMPIIEIuuiiiiie e 122

Key Files Summary for [tanium(TM) COMPIIEN.........uvviiiieee e 123
Intel C++ INtrinSIiCS REFEIENCEiiiiiiiiiiii e 124
OVerview Of the INIINSICSooiiiiiiie e
BN LTS o)) T o SRR PPRPPRN
Benefits of Using Intrinsics
NaMING AN USAGE SYNTAX ...eiiiiiiuiiiiiiiiee e ettt ee e e ettt e e e e s s aaaabbe e et e e e s s s aaebeeeaaasasantbeeeaaaeasaansrneeaaaas
Intrinsics Implementation ACIOSS All LA ... e
Intrinsics For Implementation fOr All LA e
Integer ArithmetiC REIAIEMcooiiiiiiie e
FIoating-pOiNt REIALEMooiiiiii ettt e e e e e st b e e e e e sataeeaaeeeas
String and Block Copy REIALEA.ooiiiiiiiii e
MISCEIANEOUS INTIHINSICSeeiiiiiiiiie ettt e b e e et e e nee e s naneee s
MMX(TM) Technology INTHNSICSveiiiiiiiiie et
Support for MMX(TM) TECHNOIOGYeeeiiiiiiiiiiiie e
The EMMS Instruction: WhHhY YOU NEE Itooi i e e
EMMS USAQE GUIAEINES.ciiiiiiieiitiie ettt ettt et e e et e eeeneee s
MMX™ Technology General SUPPOIT INTHNSICSeeiiiiiiiiiiiiee e
MMX(TM) Technology Packed Arithmetic INtrNSICSccooiiiiiiiiiiie e
MMX(TM) Technology Shift INTrNSICSeeiiiiiieiiii e
MMX(TM) Technology LOGICal INTIINSICS.......eeiiiiiiiiiiiiiieee et e e e e e e nebeeeas
MMX(TM) Technology COmMPAre INIHNSICScooiiiiiiiiiiiiiie et e e e e e e enereeeeeeas
MMX(TM) Technology Set INTHNSICS. ...cccuviieiiieieiiiiiee e e e eneas
MMX(TM) Technology Intrinsics on Itanium(TM) ArchiteCture............occuveieiiiiiiiiie e
Streaming SIMD EXIENSIONSuuuuiiiiiieiiiiiie ittt e e e s e s e e e e e e s e annbeaeeeas
Intrinsics Support for Streaming SIMD EXIENSIONScoiiiuiiiiiiiaaeai it iieeee e e e
Floating-point Intrinsics for Streaming SIMD EXIENSIONSccciiiiiieiiiiieeiiiiie et
Arithmetic Operations for Streaming SIMD EXIENSIONSccoiviiiiiiiiiieiiiie e
Logical Operations for Streaming SIMD EXIENSIONS........ccouiiiiiiiiiiiiaaiiiiieec e
Comparisons for Streaming SIMD EXIENSIONS..........ueiiiiiiieiiiiie et
Conversion Operations for Streaming SIMD EXIENSIONScccuvviiiiiieiiiiiiieee e
Load Operations for Streaming SIMD EXIENSIONScciiiiiiiiiiiiiiiiee et
Set Operations for Streaming SIMD EXIENSIONS.........coiiiiiiiiiiieiiiiiee e
Store Operations for Streaming SIMD EXIENSIONS..........uuuiiiiiiiiiiiiiiiiee e e e
Cacheability Support Using Streaming SIMD EXIENSIONS.........ccoouiiiiiiiieeiiiiiee e
Integer Intrinsics Using Streaming SIMD EXIENSIONScveeiiiiiiieiiiiiie s
Memory and Initialization Using Streaming SIMD EXIENSIONScooiiiiiiiiiiieiiiiiiiieee e
Miscellaneous Intrinsics Using Streaming SIMD Extensions.............
Using Streaming SIMD Extensions on Itanium(TM) Architecture
MBICTO FUNCHIONS ...ttt et e et s e e st e e e s st e e nrne e e s neneee s
Macro Function for Shuffle Using Streaming SIMD Extensions
Macro Functions to Read and Write the Control REQISLErS...........ciiiiiiiiiiiiiiiee e
Macro Function for MatriX TranSPOSItION.eeeiiiiiioiiiiie ittt
Streaming SIMD EXIENSIONS 2 ...ccooviiiiiiiieeee e
Overview of Streaming SIMD EXtENSIONS 2 INTFNSICSeeeeiiiiieiiiieeiiieee e
FI0AtING POINE INIINSICS. ...tttk e et e e st e e s st e enne e e s neneee s

Floating-point Arithmetic Operations for Streaming SIMD EXtENSIONS 2...........oocuviieeeieeinnniinnen. 179

Logical Operations for Streaming SIMD EXIENSIONS 2.......ccoiiiuiiiiiiiaaiiiiiiieeee e eeiiieee e 183

Comparison Operations for Streaming SIMD Extensions 2 .184
Conversion Operations for Streaming SIMD EXtENSIONS 2cc.uvviiiiieiiiiiiiiiiiee e 191
Floating-point Memory and Initialization OPErationS............cccvviiiiiieeiiiiiiiieie e 194
Streaming SIMD Extensions 2 Floating-point Memory and Initialization Operations................ 194
Load Operations for Streaming SIMD Extensions 2
Set Operations for Streaming SIMD EXtENSIONS 2.......ccccuvviiiieeeeiiiiiiiiiiee e e
Store Operations for Streaming SIMD EXIENSIONS 2.........uuiiiiiiiiiiiiiiiieaee e 196
Miscellaneous Operations for Streaming SIMD EXtENSIONS 2.........covouvieiiiiiieiiiiiiieiiiiee e 197
T =T [T g (] Yo T O PP PPPPOPPPPPPPPRP 198
Integer Arithmetic Operations for Streaming SIMD EXtENSIONS 2cccuvvieiiieeiiiiiiiiiieee e 198
Integer Logical Operations for Streaming SIMD EXIENSIONS 2........coocueeeeiiiiieiiiiiie e 205
Integer Shift Operations for Streaming SIMD EXENSIONS 2........coeiiiiiiiiiiiiiiiiee e 205
Integer Comparison Operations for Streaming SIMD EXtENSIONS 2..........ccevieriiiiiiiiieeieeieniieee. 209
Conversion Operations for Streaming SIMD EXIENSIONS 2eeveiiiiiiiniiiieiiiieee e 211
Macro FUNCon fOr SNUFlE..........cooii e 212
Cacheability Support Operations for Streaming SIMD EXtE€NSIONS 2ccvvvviveeeeeiiiiiiiiiiieeeeene 212
Miscellaneous Operations for Streaming SIMD EXtENSIONS 2.........coocuiiiiiiiiiiiiiiiieiiiiee e 214
Integer Memory and Initialization OPEratioNSueiiiiieaiiiiiiiiiie e e 218
Streaming SIMD Extensions 2 Integer Memory and Initializationcccecveiiiiieieiiiieens 218
Integer Load Operations for Streaming SIMD Extensions 2 .218
Integer Set Operations for Streaming SIMD EXIENSIONS 2.........cueeiiiiiiiiiiiiiiieiee e 219
Integer Store Operations for Streaming SIMD EXIENSIONS 2.........eeivviiiiiiiiiieeiiiiie e 221
Intrinsics for Itanium(TM) INSTFUCLIONSeeiiiiiiiie e 222
Overview of Intrinsics for Itanium(TM) INSEUCHIONSuviiiiiiie e 222
Native Intrinsics for Itanium(TM) INSTFUCIONS...........uuiiiiiieai i e e 222
Lock and Atomic Operation Related INTHNSICSvveeiiiiiiieiiiiie e 224
Operating System Related INTHNSICSccoivriieiiiiie i 226
[tanium(TM) CoNVErSION INEHNSICScoiiiiiiiiei et e et e e e e e et e e e e e e e e s annbaeeeeeas 229
Register Names for getReg() and SEtREG()vveeiirreiiiiiiieiiiie et 229
[tanium(TM) Multimedia AAAItIONSueiiiiiie e e e e e e e eeeae s 232
Data Alignment, Memory Allocation Intrinsics, and Inline Assemblyccccccoveiiieeeeeeinnns 240
Overview of Data Alignment, Memory Allocation Intrinsics, and Inline Assembly..............ccccuvieeee. 240
AlGNMENT SUPPOIT ...ttt e et e e e e e e s bbb et e e e e e e s nbbbr e e e e e e e e annnneneeeas
Allocating and Freeing Aligned Memory Blocks
INTINE ASSEMDIY ...ttt e e e e ettt e e e e e s bbbt et e e e e e e e e bbb e e e e e e nbbnneeeeaeeas
Intrinsics Cross-processor IMplementation............ccocoeoiiiiiiiiiiic e

Intrinsics Cross-processor Implementation
Intrinsics For Implementation Across All IA
MMX(TM) Technology INtrinsics IMPIEMENTAtION.ccviiiiiiiiee e
Streaming SIMD Extensions INtrinsics IMplementationccouuveeiiieiiiiiiiiiieee e
Streaming SIMD Extensions 2 Intrinsics Implementation

INEEIE] CH+ ClAaSS LIDIAIIES .. it enaaes

Introduction to the Class Libraries. ..o
Welcome t0 the ClasS LIDIArIESuiviiieiiieiiieiiiiieiiieiiiesereeseseaeaeseaeaeseseaesesereseseaeasnsasaensasnsnsssnsnnnnerees
Hardware and Software REQUIFEMENTS.coouiiiiiiiiee it e s e
ADOUL ThE CIASSESeveieiiiiiiiiiiiitiiteeieiiae ettt ea et s st ata st s s essasssasssssssssssnssss s asssssssssssnsssenesnnnns

B R=Tod (o= L@ V7T AV =T 274

Details ADOUL the LIDFaries.coo ettt e e et e e e e e eaaeeeaaeeas 274
C++ Classes and SIMD OPEIALIONS.......cuiuaaiiiiiiiiietee ettt eee e e e e e e b eeaaa e e s aanbaeeeeeaeaesaannneseeeaaesaaannees 275
(0= T o= o111 PP URSRR P 278
a1 C=To [AN =Tt (o] O F= 1T PSRRI 279
T t=To LoT YL =Tot (o] GO P Y= P RUP PR 279
Terms, CONVENLIONS, QNG SYNTAX......iiiuttieiiaeaee ittt ea e e e e rbb et e e e e e e e s atbbeeeaaeeasaasbarseeeaaessaanssseeaaaeanes 280
U] [T () G @] o 1T £ (o] £ PRSPPI 282
ASSIGNMENT OPEIALONeiiiiieie ettt e ettt ettt e et e e st bt e e aabb et e s st et e e sabe e e e aabbe e e e aane e e e st beeeseneeennnees 284
(oo Tor= 1 M@ 1] =1 o] £ TP 285
Addition and SUDLraCtion OPEIALOrS.ciuerieiiiiiie ettt e et e et eeneees 286
L8] L] o] [fo= 1aTo] W@ o T=] = (o] (=TSRRI 289
] 11 1@ 1= =1 (o] £SO PP SVEURTP 291
(0f0]00] o= 11 Y0 H @] o 1T = 1o] £ T PP OTPPPPPRON 292

Pack Operators
Clear MMX(TM) Instructions State Operator

Integer Intrinsics for Streaming SIMD EXIENSIONScccoiiiiiiiiiiiiiaiiiiieiee e 306
Conversions Between FVEC aNd IVECooiiiiiiiiiiii et 307
Floating-point VECIOr CIASSEScuiiiiiiiiiiiiie ettt e e e e 309
Floating-poiNt VECIOr CIASSES.......uuiiiiiieiiiiiiieie et e e ettt e e e e e e e aab b e e e e e e e e anntbeeaeeeas 309
FVEC NOLAtION CONVENTIONS. ... uteieiiiiie ettt ettt e et e ettt e e sbe e e st b et e e abb e e s nnbeeeneneee s 310
Data Alignment
(101 01V =T {10 K TP OO PP PR OTPRPON
Constructors and INLALIZALION.iuiii i
Arithmetic Operators..........cccceveeeiviivinneenn.
Minimum and Maximum Operators
(oo (o1 M@ 1] =1 o] £ PO OT P RTOTPPRR
COMPAIE OPEIALONS ... e aaaaaaaaeaaaaaaeaeeeaaaaaaaaanas
Conditional Select Operators for FVEC ClaSSESuiiiiiiiiiiiiiie et 323
Cacheability SUPPOIT OPEIALIONSueiiieeieiiiiiii ettt et e et e e e e e e e e e e e e e e s anbbrseeeeaeesanneeeas 327
(D= o1 o o 10T T TP PSP PP PUP O PUPPP PP 327
(o= To JF=Ta [0 IS) (o] (=@ o [=T 1= 110] £ O PP PPPTT PRI 329
Unpack Operators fOr FVEC OPEIALOIS.uuiiiieeeeiiiiiii et e e ettt e e et e e e e e e et e e e e e e s aaeneeeeean 329
MOVE MASK OPEIALONcceeieiieiiteee ettt e et e e ekt e et e e sk e e e et e e e nnne s nnneee s 330
Classes QUICK REFEIEINCE........oii ettt e e e e e e e e e e e e e e e e snnenaeees 330

Programming EXamPIe.... ..o 338

About Intel(R) C++ Compiler

Welcome to the Intel® C++ Compiler

Welcome to the Intel® C++ Compiler. To use the compiler, you must have Red Hat* Linux* 7.1 or 7.2
operating system software installed on your computer.

The Red Hat Linux distributions include the GNU* C library, assembiler, linker, and others. The Intel C++
Compiler includes the Dinkumware* C++ library. See Libraries Overview.

Please look at the individual sections within each main section to gain an overview of the topics
presented. For the latest information, visit the Intel Web site:
http://developer.intel.com/design/perftool/cppontheweb.

What's New in This Release

Compiler for Two Architectures

This document combines information about Intel® C++ Compiler for IA-32-based applications and
Itanium(TM)-based applications. IA-32-based applications correspond to the applications run on any
Intel® Pentium® processor, Intel Celeron® processor, or Intel Xeon(TM).

Itanium-based applications correspond to the applications run on the Intel® Itanium(TM) processor.

The following variations of the compiler are provided for you to use according to your host system's
processor architecture:

* Intel® C++ Compiler for 32-bit Applications is designed for IA-32 systems, and its command is
i cc. The IA-32 compilations run on any 1A-32 Intel processor and produce applications that run
only on IA-32 systems. This compiler can be optimized specifically for the Intel Pentium processor
or Intel Pentium 4 processor.

* Intel® C++ Itanium(TM) Compiler for Itanium(TM)-based Applications is designed for Itanium
architecture systems, and its command is ecc. This compiler runs on Itanium-based systems and
produces Itanium-based applications. Iltanium-based compilations can only operate on Itanium-
based systems.

Features and Benefits

The Intel® C++ Compiler allows your software to perform best on computers based on the Intel
architecture. Using new compiler optimizations, such as the profile-guided optimization, prefetch
instruction and support for Streaming SIMD Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2),
the Intel C++ Compiler provides high performance.

Feature Benefit

High Performance achieve a significant performance gain by using optimizations

Support for Streaming SIMD Extensions advantage of new Intel microarchitecture

Automatic vectorizer advantage of SIMD parallelism in your code achieved automatically

OpenMP* Support shared memory parallel programming

Floating-point optimizations improved floating-point performance

Data prefetching improved performance due to the accelerated data delivery

Interprocedural optimizations larger application modules perform better

Profile-guided optimization improved performance based on profiling frequently-used procedures

Processor dispatch taking advantage of the latest Intel architecture features while maintaining object
code compatibility with previous generations of Intel® Pentium® processors (for
IA-32-based systems only).

Product Web Site and Support

For the latest information about Intel® C++ Compiler, visit the Intel C++ documentation Web site where
you will find links to:

* Intel C++ Compiler home page at http://developer.intel.com/software/products/compilers/c50/linux
* Related topics on the http://developer.intel.com Web site

For specific details on the Intel® Itanium(TM) architecture, visit the web site at
http://developer.intel.com/design/itanium/under_Inx.htm.

10

System Requirements

|A-32 Processor System Requirements

* A computer based on a Pentium® processor or subsequent IA-32 based processor (Pentium 4
processor recommended).

* 128 MB of RAM (256 MB recommended).
* 100 MB of disk space

e Linux* system with glibc 2.2.2 or 2.2.4 and kernel 2.4. The compiler has been validated with Red
Hat* Linux 7.1 and 7.2.

Itanium(TM) Processor System Requirements

ﬂNote

The native compilers for Itanium-based systems run on an Itanium-based system.
* A computer with an Itanium processor.
* 256 MB of RAM
* 100 MB of disk space

* Linux system with glibc 2.2.2 or 2.2.3 and kernel 2.4. The compiler has been validated with Red
Hat Linux 7.1 and 7.2 for Intel® Itanium-based systems.

FLEXIm* Electronic Licensing

The Intel® C++ Compiler uses the GlobeTrotter* FLEXIm* licensing technology. The compiler requires
valid license file in the | i censes directory in the installation path. The default directory is
/opt/intel/licenses and the license files have a file extension of . | i c.

11

About This Document

How to Use This Document

This User's Guide explains how you can use the Intel® C++ Compiler. It provides information on how to
get started with the Intel C++ Compiler, how this compiler operates and what capabilities it offers for high
performance. You learn how to use the standard and advanced compiler optimizations to gain maximum
performance of your application.

This documentation assumes that you are familiar with the C and C++ programming languages and with
the Intel processor architecture. You should also be familiar with the host computer's operating system.

E'}Note

This document explains how information and instructions apply differently to each targeted architecture. If
there is no specific indication to either architecture, the description is applicable to both architectures.

Conventions

This documentation uses the following conventions:

This t ype st yI e Indicates an element of syntax, reserved word,
keyword, filename, computer output, or part of
a program example. The text appears in
lowercase unless uppercase is significant.

This type style Indicates the exact characters you type as
input.
This type style Indicates a placeholder for an identifier, an

expression, a string, a symbol, or a value.
Substitute one of these items for the

placeholder.

[itens] Indicates that the items enclosed in brackets
are optional.

{ itenl | iten |... } Indicates to elect one of the items listed

between braces. A vertical bar (|) separates
the items. Some options, such as -

ax{i| M K| M, permit the use of more than
onei tem

(ell'i pses) Indicate that you can repeat the preceding item.

12

Naming Syntax for the Intrinsics

Most intrinsic names use a notational convention as follows:

_mm<intrin_op>_<suffix>

<intrin_op> Indicates the intrinsics basic operation; for
example, add for addition and Sub for
subtraction.
<suf fix> Denotes the type of data operated on by the
instruction. The first one or two letters of each
suffix denotes whether the data is packed (P),
extended packed (€D), or scalar (S). The
remaining letters denote the type:
® S single-precision floating point
* _ d double-precision floating point
* i 128 signed 128-bit integer
* i 64 signed 64-bit integer
* _ U64 unsigned 64-bit integer
* | 32 signed 32-bit integer
* U32 unsigned 32-bit integer
* i 16 signed 16-bit integer
e ulé6 unsigned 16-bit integer
* | 8 signed 8-bit integer
* U8 unsigned 8-bit integer

A number appended to a variable name indicates the element of a packed object. For example, r0 is the
lowest word of r. Some intrinsics are "composites" because they require more than one instruction to
implement them.

The packed values are represented in right-to-left order, with the lowest value being used for scalar
operations. Consider the following example operation:

double a[2] = {1.0, 2.0}; _ nl28dt = mmload _pd(a);

The result is the same as either of the following:

_ m28dt = mmset _pd(2.0, 1.0); _ m28d t = mmsetr_pd(1.0, 2.0);
In other words, the xmm register that holds the value t will look as follows:

127)

The "scalar" element is 1.0. Due to the nature of the instruction, some intrinsics require their arguments to
be immediates (constant integer literals).

13

Naming Syntax for the Class Libraries

The name of each class denotes the data type, signedness, bit size, number of elements using the
following generic format:

<t ype><si gnedness><bhi t s>vec<el enent s>

{F] 1} {s]u} {64 32| 16| 8} vec { 8] 4| 2] 1}
where

<type> Indicates floating point (F) or integer (1)

<si gnedness> Indicates signed ('S) or unsigned (U). For the

| vec class, leaving this field blank indicates
an intermediate class. There are no unsigned
Fvec classes, therefore for the Fvec
classes, this field is blank.

<bi t s> Specifies the number of bits per element

<el ement s> Specifies the number of elements

Related Publications

The following documents provide additional information relevant to the Intel® C++ Compiler:
e ISO/IEC 9989:1990, Programming Languages--C
* ISO/IEC 14882:1998, Programming Languages--C++.

* The Annotated C++ Reference Manual, 3rd edition, Ellis, Margaret; Stroustrup, Bjarne, Addison
Wesley, 1991. Provides information on the C++ programming language.

e The C++ Programming Language, 3rd edition, 1997: Addison-Wesley Publishing Company, One
Jacob Way, Reading, MA 01867.

* The C Programming Language, 2nd edition, Kernighan, Brian W.; Ritchie, Dennis W., Prentice
Hall, 1988. Provides information on the K & R definition of the C language.

* C: A Reference Manual, 3rd edition, Harbison, Samual P.; Steele, Guy L., Prentice Hall, 1991.
Provides information on the ANSI standard and extensions of the C language.

* Intel Architecture Software Developer's Manual, Volume 1: Basic Architecture, Intel Corporation,
doc. number 243190.

* Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual,
Intel Corporation, doc. number 243191.

* Intel Architecture Software Developer's Manual, Volume 3: System Programming, Intel
Corporation, doc. number 243192.

* Intel® Itanium(TM) Assembler User's Guide.

* Intel® Itanium(TM)-based Assembly Language Reference Manual.

14

Itanium(TM) Architecture Software Developer's Manual Vol. 1: Application Architecture, Intel
Corporation, doc. number 245317-001.

Itanium(TM) Architecture Software Developer's Manual Vol. 2: System Architecture, Intel
Corporation, doc. number 245318-001.

Itanium(TM) Architecture Software Developer's Manual Vol. 3: Instruction Set Reference, Intel
Corporation, doc. number 245319-001.

Itanium(TM) Architecture Software Developer's Manual Vol. 4: Itanium(TM) Processor
Programmer's Guide, Intel Corporation, doc. number 245319-001.

Intel Architecture Optimization Manual, Intel Corporation, doc. number 245127.
Intel Processor Identification with the CPUID Instruction, Intel Corporation, doc. number 241618.

Intel Architecture MMX(TM) Technology Programmer's Reference Manual, Intel Corporation, doc.
number 241618.

Pentium® Pro Processor Developer's Manual (3-volume Set), Intel Corporation, doc. number
242693.

Pentium® Il Processor Developer's Manual, Intel Corporation, doc. number 243502-001.
Pentium® Processor Specification Update, Intel Corporation, doc. number 242480.

Pentium® Processor Family Developer's Manual, Intel Corporation, doc. numbers 241428-005.

Most Intel documents are also available from the Intel Corporation Web site at http://www.intel.com.

15

Disclaimer

This Intel® C++ Compiler User's Guide as well as the software described in it is furnished under license
and may only be used or copied in accordance with the terms of the license. The information in this
manual is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability
for any errors or inaccuracies that may appear in this document or any software that may be provided in
association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means without the express written consent of Intel
Corporation.

Information in this document is provided in connection with Intel products. No license, express or implied,
by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as
provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability whatsoever,
and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including
liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any
patent, copyright or other intellectual property right. Intel products are not intended for use in medical, life
saving, or life sustaining applications. Intel may make changes to specifications and product descriptions
at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel® C++ Compiler may contain design defects or errors known as errata which may cause the
product to deviate from published specifications. Current characterized errata are available on request.

Copyright © Intel Corporation 1996-2002.

Intel, Pentium, Itanium, Xeon, Celeron, and MMX are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States and other countries.

* Other names and brands may be claimed as the property of others.

16

Compiler Options Quick Reference

Guides

Options Quick Reference Guides

Overview

Conventions Used in the Options Quick Guide Tables

Convention Definition

[-] indicates that if option includes the "- *, the option is disabled.

[d] if present, indicates that the debug mode is implemented.

[n] indicates that the value N in [] can be omitted or have various values.

Values in { } with vertical bars

are used for option's version; for example, option - i { 2| 4| 8} has
these versions: - i 2,-1 4,-1i 8.

{n}

indicates that option must include one of the fixed values for N.

Words int hi s st yl e following an opt i on

indicate option's required argument(s). Arguments are separated by
comma if more than one are required.

17

New Options in Version 6.0

* Options specific to the Itanium(TM) architecture (Itanium-based systems only)

* Options available for both I1A-32 and Itanium architecture

Option Description Default
-falias Assume aliasing in program. ON
-fno-alias Assume no aliasing in program. OFF
-ffnalias Assume aliasing within functions. ON
-fno-fnalias Assume no aliasing within functions, but |OFF
assume aliasing across calls.
-fcode-asm Produce assembly file with optional code |OFF
annotations.
-fsource-asm Produce assembly file with optional source |OFF
annotations.
-fverbose-asm Produce assembly file with compiler ON
comments.
-fnver bose-asm Produce assembly file with no compiler OFF
comments.
-ftz Flushes denormal results to zero. OFF
Itanium-based systems only
-1 PF_fma[-] Enable [disable] the combining of floating- |OFF
Itanium-based systems only point multiplies and add/subtract
operations.
-1 PF fltacc[-] Enable [disable] optimizations that affect |OFF
Itanium-based systems only floating point accuracy.
-1PF flt_eval nethodO Floating-point operands evaluated to the [OFF
Itanium-based systems only precision indicated by program.
- I PF_f p_specul at i onnode Enable floating-point speculations with the |OFF
Itanium-based systems only following Nnode conditions:
e fast - speculate floating-point
operations
e saf e - speculate only when
safe
* strict -sameas off
e of f - disables speculation of
floating-point operations
-ivdep_paral l el This option indicates there is absolutely no [OFF
Itanium-based systems only loop-carried memory dependency in the
loop where IVDEP directive is specified.
- opennpP Same as opennp (parallel). OFF

18

Option

Description

Default

-opennpS

Enables the user to compile OpenMP*
programs in sequential mode. The openmp
directives are ignored, and a stub OpenMP
library is linked (sequential).

OFF

-opt _report

Generates an optimization report directed
to stderr, unless -
opt _report _fil eis specified

OFF

-opt _report_filefilenane

Specifies the f i | enane for the
optimization report. It is not necessary to
invoke - Opt _r epor t when this option
is specified.

OFF

-opt _report _level[level]

Specifies the verbosity | evel of the
output. Valid | evel arguments:

e mn
e ned
e max

Ifal evel is not specified, M N is used
by default.

OFF

-opt _report_phasephase

Specifies the compilation phase for
which reports are generated. The option
can be used multiple times in the same
compilation to get output from multiple
phases.
Valid phase arguments:
* | po: Interprocedural Optimizer
* hl 0: High Level Optimizer

e i | 0: Intermediate Language
Scalar Optimizer

® €CQ: Electron Code Generator
* On: OpenMP*

e al | :Allphases

OFF

opt _report_routine[substr
i ng]

Specifies a routine SUbst ri ng.
Reports from all routines with names that
include subst r i ng as part of the name
are generated. By default, reports for all
routines are generated.

OFF

-opt _report_hel p

Displays all possible settings for -
opt _report _phase. No compilation
is performed.

OFF

-parallel

Detects parallel loops capable of being
executed safely in parallel and
automatically generates multithreaded
code for these loops.

OFF

19

Option Description Default
-par_report{0]| 1] 2| 3} Controls the auto-parallelizer's diagnostic [OFF
levels 0, 1, 2, or 3 as follows:

e -par_reportO:no
diagnostic information is
displayed.

e -par_report 1:indicates
loops successfully auto-
parallelized (default).

e -par_report 2:loops
successfully and unsccessfully
auto-parallelized.

e -par_report 3:sameas?2
plus additional information about
any proven or assumed
dependences inhibiting auto-
parallelization.

- par _t hreshol dn Sets a threshold for the auto-parallelization [OFF

of loops based on the probability of
profitable execution of the loop in parallel,
N=0 to 100. This option is used for loops
whose computation work volume cannot be
determined at compile time.

* -par_threshol dO: loops
get auto-parallelized regardless
of computation work volume.

e -par_threshol d100:
loops get auto-parallelized only if
profitable parallel execution is
almost certain.

-x[type]

All source files found subsequent to -
X[t ype] will be recognized as one of
the following types:

® C:Csource file

® C++: C++ source file

e c- header : C header file

* Cpp-output:c
preprocessed file

e assenbl er: Assembly file
* assenbler-wth-cpp:
Assembly file that needs to be

preprocessed.

® Nnone: Disable recognition and
revert to file extension.

OFF

20

Alphabetical Listing

Compiler Options Quick Reference Guide

This topic provides you with a reference to all the compilation control options and some linker control

options.

* Options specific to 1A-32 architecture

* Options specific to the Itanium(TM) architecture

* Options available for both IA-32 and Itanium(TM) architecture

Option Description Default
- 0f _check Avoids the incorrect decoding of certain Of instructions for ~ |OFF
I1A-32 only code targeted at older processors.
- A- Disables all predefined macros. OFF
-[no]align Analyze and reorder memory layout for variables and arrays. |OFF
1A-32 only
- Anane[(val ue)] Associates a symbol nanme with the specified sequence of |OFF
val ue .Equivalentto an#assert preprocessing
directive.
-ansi [-] Enables [disables] assumption of the program's ANSI OFF
conformance.
-ax{i| MKW Generates specialized code for processor-specific codes i , M |OFF
IA-32 only K, Wiwhile also generating generic 1A-32 code.
* | =Pentium® Pro and Pentium Il processor
instructions
* M= MMX(TM) instructions
e K= streaming SIMD extensions
* W= Pentium 4 processor instructions
-C Places comments in preprocessed source output. OFF
-C Stops the compilation process after an object file has been OFF
generated. The compiler generates an object file for each C or
C++ source file or preprocessed source file. Also takes an
assembler file and invokes the assembler to generate an
object file.
- Dnane[{ =| #} val ue] Defines a macro NanMe and associates it with the specified |OFF
val ue
-dryrun Show driver tool commands but do not execute tools. OFF
-E Stops the compilation process after the C or C++ source files [OFF
have been preprocessed, and writes the results to stdout.
-EP Preprocess to stdout omitting #| i ne directives. OFF

21

Option Description Default

-falias Assume aliasing in program. ON

-fcode-asm Produce assembly file with optional code annotations. OFF

-fno-alias Assume no aliasing in program. OFF

-ffnalias Assume aliasing within functions ON

-fno-fnalais Assume no aliasing within functions, but assume aliasing OFF
across calls.

-f[no]verbose-asm Produce assembly file with compiler components. ON

-fp Use EBP stack frame for all functions. OFF

1A-32 only

-fpic, -fPRPic Generate position independent code. OFF

-fp_port Round fp results at assignments and casts. Some speed OFF

IA-32 only impact.

-fr32 Use only lower 32 floating-point registers. OFF

Itanium-based systems only

-fsource-asm Produce assembly file with optional code annotations.

-ftz Flushes denormal results to zero. OFF

Itanium-based systems only

-g Generates symbolic debugging information in the object code [OFF
for use by source-level debuggers.

-H Print "include" file order; don't compile. OFF

-hel p Prints compiler options summary. OFF

-ldirectory Specifies an additional di r ect ory to search for include |OFF
files.

-i _dynanic Link Intel provided libraries dynamically. OFF

-inline_debug_info Preserve the source position of inlined code instead of OFF
assigning the call-site source position to inlined code.

-ip Enables interprocedural optimizations for single file OFF
compilation.

-1 PF_frma[-] Enable [disable] the combining of floating-point multiplies and |OFF

Itanium-based systems only add/subtract operations.

-1 PF fltacc[-] Enable [disable] optimizations that affect floating-point OFF

Itanium-based systems only

accuracy.

-IPF_flt _eval nethodO

Itanium-based systems only

Floating-point operands evaluated to the precision indicated by
the program.

OFF

22

Option Description Default
-1 PF_fp_specul ati onnode Enable floating-point speculations with the following node |OFF
Itanium-based systems only conditions:
e fast - speculate floating-point operations
e saf e - speculate only when safe
e strict -sameasoff
e of f - disables speculation of floating-point
operations
-ip_no_inlining Disables inlining that would result from the - i p OFF
interprocedural optimization, but has no effect on other
interprocedural optimizations.
-ip_no_pinlining Disable partial inlining. Requires - i p or-i poO. OFF
- po Enables interprocedural optimizations across files. OFF
-ipo_c Generates a multifile object file (i pO_out . 0) thatcan be |OFF
used in further link steps.
-i po_obj Forces the compiler to create real object files when used with |OFF
-i po.
-ipo_S Generates a multifile assembly file named i po_out . s that |OFF
can be used in further link steps.
-ivdep parall el This option indicates there is absolutely no loop-carried OFF
Itanium-based systems only memory dependency in the loop where IVDEP directive is
specified.
- Kc++ Compile all source or unrecognized file types as C++ source [OFF
files.
- Kc++eh Enable C++ exception handling. ON
- Knopi ¢, - KNOPI C Don't generate position independent code. OFF
Itanium-based systems only
-KPI C, - Kpi ¢ Generate position independent code. OFF for IA-32
ON for Itanium-
based systems
-Ldirectory Instruct linker to search di r ect ory for libraries. OFF
-1 ong_doubl e Changes the default size of the long double data type from 64 |OFF
1A-32 only to 80 bits.
-M Generates makefile dependency lines for each source file, OFF
based on the #i ncl ude lines found in the source file.
- Favors conformance to the ANSI C and |IEEE 754 standards |OFF
for floating-point arithmetic.
-nmpl Improve floating-point precision (speed impact is less than - |OFF

np).

23

Option Description Default
-nobss_init Places variables that are initialized with zeroes in the DATA |OFF
section. Disables placement of zero-initialized variables in
BSS (use DATA).
-no_cpprt Do not link in C++ run time libraries. OFF
-nolib_inline Disables inline expansion of standard library functions. OFF
-nostartfiles Do not use standard startup files when linking. OFF
-nostdlib Do not use standard libraries and startup files when linking. OFF
-0 Same as - OL on IA-32. Same as - O2 on Itanium-based OFF
systems.
-0 Disables optimizations. OFF
-0l Enable optimizations. Optimizes for speed. For Itanium OFF
compiler, - OL turns off software pipelining to reduce code
size.
-2 Same as - OL on IA-32. Same as - Oon Itanium-based ON
systems.
-3 Enable - O2 plus more aggressive optimizations that may OFF
increase the compilation time. Impact on performance is
application dependent, some applications may not see a
performance improvement.
-ofile Name outputf i | e OFF
-opennmp Enables the parallelizer to generate multi-threaded code OFF

based on the OpenMP* directives. The - OpenNNy option only
works at an optimization level of - O2 (the default) or higher.

-opennp_report{0| 1] 2}

Controls the OpenMP* parallelizer's diagnostic levels.

opennp_rep
ortl
-opennpP Same as opennp (parallel). OFF
-opennpS Enables the user to compile OpenMP* programs in sequential |OFF
mode. The openmp directives are ignored, and a stub
OpenMP library is linked (sequential).
-opt _report Generates an optimization report directed to stderr, unless OFF
-opt _report_fil e is specified.
-opt _report_filefilenane Specifies the f i | @nane for the optimization report. It is not |OFF

necessary to invoke - Opt _r epor t when this option is
specified.

24

Option

Description

Default

-opt _report_level[level]

Specifies the verbosity | evel of the output. Valid | evel
arguments:

e mn
e ned
e max

Ifal evel is not specified, M N is used by default.

OFF

-opt _report_phasenane

Specifies the compilation phas e for which reports are
generated. The option can be used multiple times in the same
compilation to get output from multiple phases.

Valid phase arguments:

* | po: Interprocedural Optimizer

e hl 0: High Level Optimizer

e i | 0: Intermediate Language Scalar Optimizer
® €CQ: Electron Code Generator

* On: OpenMP*

e al | :Allphases

OFF

-opt _report _routinesubstring

Specifies a routine SUDSt I i NQ. Reports from all routines
with names that include SUDSt i Ng as part of the name
are generated. By default, reports for all routines are
generated.

OFF

-opt _report_help

Displays all possible settings for - opt _r eport _phase.
No compilation is performed.

OFF

-P,-F Stops the compilation process after C or C++ source files have [OFF
been preprocessed and writes the results to files named
according to the compiler's default file-naming conventions.
-parall el Detects parallel loops capable of being executed safely in OFF

parallel and automatically generates multithreaded code for
these loops.

- par_report{0] 1] 2| 3}

Controls the auto-parallelizer's diagnostic levels 0, 1, 2, or 3 as
follows:

e - par _report 0: no diagnostic information is
displayed.

e -par_report 1:indicates loops successfully
auto-parallelized (default).

e - par_report 2:loops successfully and
unsccessfully auto-parallelized.

* -par_report 3:same as 2 plus additional
information about any proven or assumed
dependences inhibiting auto-parallelization.

OFF

25

Option Description Default
- par _threshol d[n] Sets a threshold for the auto-parallelization of loops based on |OFF
the probability of profitable execution of the loop in parallel,
N=0 to 100. This option is used for loops whose computation
work volume cannot be determined at compile time.
e -par_threshol dO: loops get auto-
parallelized regardless of computation work volume.
e -par_threshol d100: loops get auto-
parallelized only if profitable parallel execution is
almost certain.
- pc32 Set internal FPU precision to 24-bit significand. OFF
1A-32 only
- pc64 Set internal FPU precision to 53-bit significand. ON
1A-32 only
- pc80 Set internal FPU precision to 64-bit significand. OFF
I1A-32 only
-prec _div Disables the floating point division-to-multiplication OFF
IA-32 only optimization. Improves precision of floating-point divides.
-prof _dir dirnane Specify the directory (di r name) to hold profile information |OFF
*. dyn, *. dpi).
-prof file filenane Specify the fi | ename for profiling summary file. OFF

- prof _gen[x]

Instruments the program to prepare for instrumented execution
and also creates a new static profile information file (. SPI).
With the X qualifier, extra information is gathered.

OFF

- prof _use Uses dynamic feedback information. OFF

-Qansi[-] Enable [disable] stating ANSI compliance of the compiled ON

Itanium-based systems only program and that optimizations can be based on the ANSI
rules.

-Qnstall dir Sets di r as root of compiler installation. OFF

-Q ocation,tool, path Sets pat h as the location of the tool specified by t 00l OFF

-Qoption,tool,list Passes an argument | i St to anothert 00l inthe OFF
compilation sequence, such as the assembler or linker.

-gp.-p Compile and link for function profiling with UNIX* pr of OFF
t ool

-rcd Disables changing of the FPU rounding control. Enables fast |OFF

1A-32 only float-to-int conversions.

-restrict Enables pointer disambiguation with the r est ri ct OFF
qualifier.

-S Generates assembly files with . S suffix, then stops the OFF
compilation.

- shar ed Produce a shared object. OFF

26

Option Description Default
-size | p64 Assume 64-bit size for long and pointer types. OFF
Itanium-based systems only
- sox| -] Enables [disables] the saving of compiler options and version |ON
I1A-32 only information in the executable file. NOTE: This option is
maintained for compatibility only on Itanium(TM)-based
systems.
-static Prevents linking with shared libraries. OFF
-synt ax Checks the syntax of a program and stops the compilation OFF
process after the C or C++ source files and preprocessed
source files have been parsed. Generates no code and
produces no output files. Warnings and messages appear on
stderr.
-t pp5 Targets the optimizations to the Intel® Pentium® processor. [OFF
1A-32 only
-t pp6 Targets the optimizations to the Intel Pentium Pro, Pentium Il [ON (IA-32)
I1A-32 only and Pentium Il processors. OFF(Itanium-
based systems)
-t pp7 Tunes code to favor the Intel Pentium 4 processor. OFF
I1A-32 only
- Unane Suppresses any definition of a macro Name. Equivalenttoa |OFF
#undef preprocessing directive.
-unrol 10 Disable loop unrolling. OFF
Itanium-based systems only
-unrol [[n] Set maximum number of times to unroll loops. Omitn to use |OFF
I1A-32 only default heuristics. Use N =0 to disable loop unroller.
-use_asm Produce objects through assembler. OFF
-use_nsasm Accept the Microsoft* MASM-style inlined assembly format OFF
1A-32 only instead of GNU-style.
-u synbol Pretend the Synmbol is defined. OFF
-V Display compiler version information. OFF
-vec[-] Enable [disable] the vectorizer. ON
1A-32 only

27

Option

Description

Default

-vec_report[n]
1A-32 only

Controls the amount of vectorizer diagnostic information.
® N =0 no diagnostic information
® N =1lindicates vectorized loops (DEFAULT)
® N =2indicates vectorized/non-vectorized loops

®* N =3indicates vectorized/non-vectorized loops and
prohibiting data dependence information

® N =4indicates non-vectorized loops

®* N =5indicates non-vectorized loops and prohibiting

vec_report
1

data
-W Disable all warnings. OFF
-Wn Control diagnostics. OFF
® N =0 displays errors
(same as -w)
® N =1displays warnings and errors (DEFAULT)
® N =2displays remarks, warnings, and errors
-wdL1[, L2,...] Disables diagnostics L1 through LN. OFF
-well[,L2,...] Changes severity of diagnostics L1 through LNto error. OFF
-wnn Limits the number of errors displayed prior to aborting n=100
compilation to N
- i po Compile all objects over entire program with multifile OFF
Wp_I p
interprocedural optimizations. This option additionally makes
the whole program assumption that all variables and functions
seen in compiled sources are referenced only within those
sources; the user must guarantee that this assumption is safe.
-wrL1[,L2,...] Changes the severity of diagnostics L1 through LN to remark.|OFF
-wwLa[, L2, ...] Changes severity of diagnostics L1 through LNto warning. |OFF
-W,o01[,02,...] Pass options 01, 02, etc. to the linker for processing. OFF

28

Option

Description

Default

- Xtype

All source files found subsequent to - Xt ype will be
recognized as one of the following t ypes:

® C - Csource file

® C++ - C++ source file

* c-header - C header file

* Cpp-out put -C preprocessed file
e assenbl er -assembly file

e assenbl er-with-cpp - Assembly file that
needs to be preprocessed.

® Nnone - Disable recognition and revert to file
extension.

OFF

Removes the standard directories from the list of directories to
be searched for include files.

OFF

- Xa

Select extended ANSI C dialect.

OFF

- Xc, - ansi

Select strict ANSI conformance dialect.

OFF

-x{i| MKW

1A-32 only

Generates specialized code to run exclusively on processors
supporting the extensions indicated by processor-specific

codesi , MK W

e | =Pentium® Pro and Pentium Il processor
instructions

* M= MMX(TM) instructions
e K= streaming SIMD extensions

* \W= Pentium 4 processor instructions

OFF

-Xl'i nker val

Pass vVal directly to the linker for processing.

OFF

-Zp{ 1| 2| 4| 8] 16}

Specifies the strictest alignment constraint for structure and
union types as one of the following: 1, 2, 4, 8, or 16 bytes.

-Zpl6

29

Functional Groups Listing

Customizing Compilation Process Options

Alternate Tools and Locations

Option

Description

-Q ocation,tool, path

Allows you to specify the path for tools such as the assembler, linker,
preprocessor, and compiler.

-Qoption,tool,optlist

Passes an option specified by Opt | i St toat 0ol ,where opt | i st isa
comma-separated list of options.

Preprocessing Options

Option Description

- Anane[(val ues, ...)] Associates a symbol Name with the specified sequence of val ues
Equivalent to an #asser t preprocessing directive.

- A- Causes all predefined macros (other than those beginning with __ and assertions
to be inactive.

-C Preserves comments in preprocessed source output.

- Dnan®e[(val ue)]

Defines the macro NAITE and assoaciates it with the specified val ue . The
default (- Dnanme) defines a macro with aval ue of 1.

-E Directs the preprocessor to expand your source module and write the result to
standard output.

-EP Same as - E but does not include #| i ne directives in the output.

-P Directs the preprocessor to expand your source module and store the result in a
file in the current directory.

- Unane Suppresses any automatic definition for the specified macro nane .

Controlling Compilation Flow

Option

Description

-C

Stops the compilation process after an object file has been generated. The
compiler generates an object file for each C or C++ source file or preprocessed
source file. Also takes an assembler file and invokes the assembler to generate an
object file.

-Kpic,-KPIC

Generate position-independent code.

-1 nane

Link with a library indicated in nane.

30

Option Description

-nobss_init Places variables that are initialized with zeroes in the DATA section.

-P, -F Stops the compilation process after C or C++ source files have been preprocessed
and writes the results to files named according to the compiler's default file-naming
conventions.

-S Generates assembly files with . S sulffix, then stops the compilation.

-sox][-] Enables [disables] the saving of compiler options and version information in the

Itanium(TM)-based systems only

executable file.

-Zp{ 1] 2| 4| 8| 16}

Specifies the strictest alignment constraint for structure and union types as one of
the following: 1, 2, 4, 8, or 16 bytes.

- 0f _check
1A-32 only

Avoids the incorrect decoding of certain Of instructions for code targeted at older
processors.

Controlling Compilation Output

Option Description

-Ldirectory Instruct linker to search di r ect or y for libraries.

- onane Produces an executable output file with the specified file Nane , or the default file
name if file NANMe is not specified.

-S Generates assembly files with . S suffix, then stops the compilation.

Debugging Options

Option Description

-0 Debugging information produced, - Q0 enabled, - f p enabled for IA-32-targeted
compilations.

-g - Debugging information produced, - O2 optimizations enabled, - f p disabled for
IA-32-targeted compilations.

-g -8B -fp Debugging information produced, - O3 optimizations enabled, - f p enabled for
IA-32-targeted compilations.

-g -ip Limited debugging information produced due to function inlining optimization, - i p

option enabled.

31

Diagnostic Messages

Option Description

-w0, -w Displays error messages only. Both - WO and - Wdisplay exactly the same
messages.

-wl, - w2 Displays warnings and error messages. Both - W1 and - W2 display exactly the
same messages.The compiler uses this level as the default.

Language Conformance Options

Conformance Options

Option Description
-ansi[-] Enables [disables] assumption of the program's ANSI conformance.
-np Favors conformance to the ANSI C and IEEE 754 standards for floating-point

arithmetic. Behavior for NaN comparisons does not conform.

Application Performance Optimization Options

Optimization-level Options

Option Description

-0 Disables optimizations.

-0 Enables optimizations. Optimizes for speed. - OL disables inline expansion of
library functions. For Itanium(TM) compiler, - OL turns off software pipelining to
reduce code size.

-2 Equivalent to option - OL.

-3 Builds on - OL and - O2 by enabling high-level optimization. This level does not

guarantee higher performance unless loop and memory access transformation
take place. In conjunction with - ax K/- XK, this switch causes the compiler to
perform more aggressive data dependency analysis than for - O2. This may result
in longer compilation times.

* - f p is an 1A-32 only option and not applicable to compilations targeted for Iltanium(TM)-based systems.

32

Floating-point Arithmetic Precision

Options for 1A-32 and Itanium(TM)-based Systems

Option

Description

-np

The - P option restricts optimization to maintain declared precision and to ensure
that floating-point arithmetic conforms more closely to the ANSI and IEEE
standards. For most programs, specifying this option adversely affects
performance. If you are not sure whether your application needs this option, try
compiling and running your program both with and without it to evaluate the effects
on performance versus precision. Specifying this option has the following effects
on program compilation:

® User variables declared as floating-point types are not assigned to
registers.

®* Whenever an expression is spilled, it is spilled as 80 bits (extended
precision), not 64 bits (double precision).

® Floating-point arithmetic comparisons conform to IEEE 754 except for
NaN behavior.

® The exact operations specified in the code are performed. For example,
division is never changed to multiplication by the reciprocal.

® The compiler performs floating-point operations in the order specified
without reassociation.

® The compiler does not perform the constant-folding optimization on
floating-point values. Constant folding also eliminates any multiplication
by 1, division by 1, and addition or subtraction of 0. For example, code
that adds 0.0 to a number is executed exactly as written. Compile-time
floating-point arithmetic is not performed to ensure that floating-point
exceptions are also maintained.

®* Floating-point operations conform to ANSI C. When assignments to type
float and double are made, the precision is rounded from 80 bits
(extended) down to 32 bits (float) or 64 bits (double). When you do not
specify - Op, the extra bits of precision are not always rounded before
the variable is reused.

e The-nol i b_inline option, which disables inline functions
expansion, is used.

Note: The- nol i b_i nl i ne and - NP options are active by default when you
choose the - XC (strict ANSI C conformance) option.

-1 ong_doubl e

Use - | ong_doubl e to change the size of the long double type to 80 bits. The
Intel compiler's defalt long double type is 64 bits in size, the same as the double
type. This option introduces a number of incompatibilities with other files compiled
without this option and with calls to library routines. Therefore, Intel recommends
that the use of long double variables be local to a single file when you compile with

this option.

33

Options for 1A-32 Only

ACaution

A change of the default precision control or rounding mode (for example, by using the - pc32 flag or by
user intervention) may affect the results returned by some of the mathematical functions.

Option Description

-nmpl Use the - NP1 option to improve floating-point precision. - NP1 disables fewer
optimizations and has less impact on performance than - np.

-prec_div With some optimizations, such as - XK and - X W the Intel® C++ Compiler
changes floating-point division computations into multiplication by the reciprocal of
the denominator. For example, A/B is computed as A x (1/B) to improve the speed
of the computation. However, for values of B greater than 2%, the value of 1/B is
"flushed" (changed) to 0. When it is important to maintain the value of 1/B, use -
prec_di v to disable the floating-point division-to-multiplication optimization.
The result of - pr ec_di V is greater accuracy with some loss of performance.

-pcn Use the - PCN option to enable floating-point significand precision control. Some
floating-point algorithms are sensitive to the accuracy of the significand or
fractional part of the floating-point value. For example, iterative operations like
division and finding the square root can run faster if you lower the precision with
the - PCN option. Set N to one of the following values to round the significand to
the indicated number of bits:

* -pc32: 24 bits (single precision) -- See Caution statement above.
* -pc64: 53 bits (single precision)
* -pc80: 64 bits (single precision)

The default value for N is 64, indicating double precision.

-rcd The Intel compiler uses the - I cd option to improve the performance of code that
requires floating-point-to-integer conversions. The optimization is obtained by
controlling the change of the rounding mode. The system default floating point
rounding mode is round-to-nearest. This means that values are rounded during
floating point calculations. However, the C language requires floating point values
to be truncated when a conversion to an integer is involved. To do this, the
compiler must change the rounding mode to truncation before each floating point-
to-integer conversion and change it back afterwards. The - r cd option disables
the change to truncation of the rounding mode for all floating point calculations,
including floating point-to-integer conversions. Turning on this option can improve
performance, but floating point conversions to integer will not conform to C
semantics.

34

Processor Dispatch Support (IA-32 only)

Option Description

-t pp5 Optimizes for the Intel® Pentium® processor.
Enables best performance for Pentium processor

-t pp6 Optimizes for the Intel Pentium Pro, Pentium I, and Pentium Il processors.
Enables best performance for the above processors

-t pp7 Optimizes for the Pentium 4 processor. Requires the RedHat* Linux* 7.1 and

support of Streaming SIMD Extensions 2.
Enables best performance for Pentium 4 processor

-ax{i| MKW

Generates, in a single binary, code specialized to the extensions specified by the
codes:

* | Pentium Pro, Pentium Il processors

. MPentium with MMX(TM) technology processor
e K Pentium Ill processor

¢ WpPentium 4 processor

In addition, - aX generates generic IA-32 code. The generic code is usually
slower.

-x{i | MKW

Generate specialized code to run exclusively on the processors supporting the
extensions indicated by the codes:

* | Pentium Pro, Pentium Il processors
. MPentium with MMX(TM) technology processor
e KPentium Ill processor

¢ \WpPentium 4 processor

35

Interprocedural Optimizations

Option

Description

_|p

Enables interprocedural optimizations for single file compilation.

-ip_no_inlining

Disables inlining that would result from the - i p interprocedural optimization, but
has no effect on other interprocedural optimizations.

-ipo Enables interprocedural optimizations across files.

-ipo_c Generates a multifile object file that can be used in further link steps.

-i po_obj Forces the compiler to create real object files when used with - i pO.

- po_S Generates a multifile assembly file named ipo_out.asm that can be used in further

link steps.

-inline_debug_ info

Preserve the source position of inlined code instead of assigning the call-site
source position to inlined code.

-nolib_inline

Disables inline expansion of standard library functions.

-Wp_i po

Compile all objects over entire program with multifile interprocedural optimizations.
This option additionally makes the whole program assumption that all variables
and functions seen in compiled sources are referenced only within those sources;
the user must guarantee that this assumption is safe.

Profile-guided Optimizations

Option

Description

- prof _gen[x]

Instructs the compiler to produce instrumented code in your object files in
preparation for instrumented execution. NOTE: The dynamic information files are
produced in phase 2 when you run the instrumented executable.

- prof _use Instructs the compiler to produce a profile-optimized executable and merges
available dynamic information (.dyn) files into a pgopti.dpi file. If you perform
multiple executions of the instrumented program, - pr of _use merges the
dynamic information files again and overwrites the previous pgopti.dpi file.

-prof _dirdir Specifies the directory (dir) to hold profile information in the profiling output files,

.dynand. dpi .

-prof _filefile

Specifies f i | € name for profiling summary file.

36

High-level Language Optimizations

Option

Description

- opennp

Enables the parallelizer to generate multi-threaded code based on the OpenMP*
directives.
Enables parallel execution on both uni- and multiprocessor systems.

-opennp_report{0| 1| 2}

Controls the OpenMP* parallelizer's diagnostic levels 0, 1, or 2:
* 0 - noinformation
° 1 - loops, regions, and sections parallelized (default)

* 2 -same as 1 plus master construct, single construct, etc.

-unrol | [n]

Set maximum number (N) of times to unroll loops. Omit N to use default
heuristics. Use N =0 to disable loop unrolling. For Itanium(TM)-based
applications, - unr ol | [O] used only for compatibility.

IA-32 Applications Only

-prefetch[-]

Enables or disables prefetch insertion (requires - O3). Reduces wait time;
optimum use is determined empirically.

Vectorization Options

Option Description

-ax{i | MK W Enables the vectorizer and generates specialized and generic IA-32 code. The
generic code is usually slower than the specialized code. - VE€C- disables
vectorization, but processor-specific code continues to be generated.

-x{i | MK W Turns on the vectorizer and generates processor-specific specialized code. -

Vec- disables vectorization, but processor-specific code continues to be
generated.

-vec_reportn

Controls the vectorizer's level of diagnostic messages:
® N =0 no diagnostic information is displayed.

* N =1display diagnostics indicating loops successfully vectorized
(default).

® N =2same as N =1, plus diagnostics indicating loops not successfully
vectorized.

® N =3sameasn =2, plus additional information about any proven or
assumed dependences.

37

Optimization Reports

Option

Description

-opt _report

Generates optimizations report and directs to St derr .

-opt _report _filefil enane

Specifies the f i | enane for the optimizations report.

-opt _report_| evel {m n| ned| max}

Specifies the detail level of the optimizations report.
Default: - opt _report _| evel min

-opt _report_phasephase

Specifies the optimization to generate the report for. Can be specified multiple
times on the command line for multiple optimizations.

-opt _report_hel p

Prints to the screen all available phases for
-opt _report_phase

-opt _report_routinesubstring

Generates reports from all routines with names containing the Subst r i ng
as part of their name. If not specified, reports from all routines are generated.

38

Compiler Options Cross-Reference for

Windows* and Linux*

Compiler Options Cross Reference

files).

Linux* Windows* Description Default
- Of - Q of Enable/disable the patch for the Pentium® |OFF
Of erratum.
-A[-] -QAl -] Remove all predefined macros. OFF
- Anane[(val)] - QAnane[(val)] Create an assertion name having value val . |OFF
-ansi[-] -Qansi[-] Enable/disable assumption of ANSI ON
conformance.
-ax{i | KM W -Qax{i | KIMW Generate code specialized for processor OFF
extensions specified by codes (i , K, M W
while also generating generic IA-32 code.
* | =Pentium® Pro and Pentium Il
processor instructions
e K= Steaming SIMD extensions
o M= MMX(TM)
* W= Streaming SIMD Extensions 2
-C -C Don't strip comments. OFF
-C -C Compile to object (. O) only, do not link. OFF
- - Dnane[=val ue] Define macro. OFF
Dnane[{ =| #} {t ext }]
-E -E Preprocess to stdout. OFF
-fp -Oy- Use EBP-based stack frame for all functions. [OFF
-0 - Zi Produce symbolic debug information in object |OFF
file.
-H - Hn Print include file order. OFF
-hel p -hel p Print help message listing. OFF
-ldirectory -ldirectory Add directory to include file search path. OFF
-inline_debug infol|-Q nline_debug info Preserve the source position of inlined code |OFF
instead of assigning the call-site source
position to inlined code.
-ip -Qp Enable single-file IP optimizations (within OFF

39

Linux* Windows* Description Default

-ip_no_inlining -Q p_no_inlining Optimize the behavior of IP: disable full and ~ |OFF
partial inlining (requires - 1 P or - i po).

-i po -Q po Enable multifile IP optimizations (between OFF
files).

-i po_obj - Q po_obj Optimize the behavior of IP: force generation [OFF
of real object files (requires - | PO).

-KPI C NA Generate position independent code (same [OFF
as - Kpi c).

-Kpi c NA Generate position independent code (same |OFF
as - KPI O.

-1 ong_doubl e - Q ong_doubl e Enable 80-bit long double. OFF

-m NA Instruct linker to produce map file. OFF

-M -V Generate makefile dependency information. |OFF

-np -Op[-] Maintain floating-point precision (disables OFF
some optimizations).

-nmpl -Qorec Improve floating-point precision (speed OFF
impact is less than - NP).

-nobss_init NA Disable placement of zero-initialized variables|OFF
in BSS (use DATA).

-nolib_inline -0 [-] Disable inline expansion of intrinsic functions. [OFF

-0 -2 OFF

-ofile -ofile Name output file. OFF

-Q0 - Disable optimizations. OFF

-0 -0O1 Optimizes for speed. OFF

-2 -2 ON

-P -EP Preprocess to file. OFF

-pc32 -Qc 32 Set internal FPU precision to 24-bit OFF
significand.

- pc64 -Qpc 64 Set internal FPU precision to 53-bit ON
significand.

- pc80 -Qpc 80 Set internal FPU precision to 64-bit OFF
significand.

-prec_div -Qprec_div Improve precision of floating-point divides OFF
(some speed impact).

-prof dir -Qoprof _dir directory |Specify directory for profiling output files OFF

directory ¢*. dynand*. dpi).

40

Linux* Windows* Description Default

-prof _file NA Specify filename for profiling summary file. [OFF

filenane

- prof _gen[x] - Qor of _genx Instrument program for profiling; with the X~ |OFF
qualifier, extra information is gathered.

- prof _use - Qor of _use Enable use of profiling information during OFF
optimization.

-Qnstall dir NA Setdi r as root of compiler installation. OFF

-Q ocation,str,dir |-Qocation, tool, pathi|setdir asthe location of tool specified by |OFF
str.

-Qoption,str,opts |-Qoption, tool, Iist Pass options opts to tool specified by str. OFF

-gp,-p NA Compile and link for function profiling with OFF
UNIX gprof tool.

-W2 - W2 Enable remarks, warnings and errors. OFF

-rcd -Qecd Enable fast floating-point-to-integer OFF
conversions.

-restrict -Qrestrict Enable the restrict keyword for OFF
disambiguating pointers.

-S -S Generates assembly files with . S suffix, then |OFF
stops the compilation.

-sox[-] - sox Enable (default)/disable saving of compiler ~ |ON
options and version in the executable.

-synt ax -Zs Perform syntax check only. OFF

-t pp5 -G Optimize for Pentium processor. OFF

-t pp6 -G6 Optimize for Pentium Pro, Pentium Il and OFF
Pentium IIl processors.

-t pp7 -G Optimize for Pentium 4 processor. OFF

- Unane -U nane Remove predefined macro. OFF

-unrol | [n] -Qunrolln Set maximum number of times to unroll loops.|OFF
Omit n to use default heuristics. Use n=0 to
disable loop unroller.

-V -V text Display compiler version information. OFF

-W -W Display errors. OFF

-wWn -Wh Control diagnostics. Display errors (n=0). OFF
Display warnings and errors (n=1). Display
remarks, warnings, and errors (n=2).

-wdLl[, L2, ...] -Qnd[t ag] Disable diagnostics L1 through LN. OFF

-well[,L2,...] - Qne[t ag] Change severity of diagnostics L1 through LN |OFF

to error.

41

Linux* Windows* Description Default
-wnn - Q[t ag] Print a maximum of N errors. OFF
-wrL1[, L2, ... -Quar [tag] Change severity of diagnostics L1 through LN [OFF
to remark.
-wwLi[, L2, ... -Qw t ag] Change severity of diagnostics L1 through LN |OFF
to warning.
-X -X Remove standard directories from include file |OFF
search path.
-x{i | KIM W -X[iP | MKW Generate code specialized for processor OFF
extensions specified by codes (i ,KMW
while also generating generic IA-32 code.
* | =Pentium® Pro and Pentium Il
processor instructions
e K= Steaming SIMD extensions
o M= MMX(TM)
* W= Streaming SIMD Extensions 2
- Xa -Ze Select extended ANSI C dialect. OFF
- Xc -Za Select strict ANSI conformance dialect. OFF
-Zp{ 1] 2| 4| 8| 16} - Zp[n] Specify, in bytes, alignment constraint for OFF

structures (N =1,2,4,8,16). Default N =8.
This option overrides the default alignment of
code.

42

Getting Started with the Intel(R) C++
Compiler

Invoking the Compiler

The ways to invoke Intel® C++ Compiler are as follows:
* Invoke directly: Running Compiler from the Command Line

* Use system make file: Running from the Command Line with make

Invoking the Compiler from the
Command Line

There are two necessary steps to invoke the Intel® C++ Compiler from the command line:
1. Setthe environment variables.

2. Invoke the compiler with i cc or ecc.

f)Note

You can also invoke the compiler with i cpc and ecpc for C++ source files on 1A-32 and Itaniun(TM)-
based systems respectively. The i cc and ecc compiler examples in this documentation apply to C and
C++ source files.

Set the Environment Variables

Before you can operate the compiler, you must set the environment variables to specify locations for the
various components. The Intel C++ Compiler installation includes shell scripts that you can use to set
environment variables. From the command line, execute the shell script that corresponds to your
installation. With the default compiler installation, these scripts are located at:

* 1A-32 Systems: /opt/intel/conpiler60/ia32/bin/iccvars.sh

* [tanium(TM)-based Systems: /opt/intel/conpil er60/ia64/bin/eccvars. sh

43

Running the Shell Scripts
Torunthei ccvars. sh script on 1A-32, enter the following on the command line:
pronpt >source /opt/intel/conpiler60/ia32/bin/iccvars.sh

If you want the i ccvar s. sh to run automatically when you start Linux*, edit your . bash_profi | e file
and add the same line to the end of your file:

set up environment for Intel compiler icc
source /opt/intel/conpiler60/ia32/bin/iccvars.sh

The procedure is similar for running the eccvar s. sh shell script on Itanium-based systems.

Invoke the Compiler
Once the environment variables are set, you can invoke the compiler for your platform:
* 1A-32 Systems: pronpt> icc [options] filel [file2. . .] [linker_options]

* [tanium(TM)-based Systems: pronpt >ecc [options] filel [file2 . . .]
[1'inker_options]

Syntax Description

options Indicates one or more command-line options. The compiler recognizes one or
more letters preceded by a hyphen (-).

filel, file2 . . . Indicates one or more files to be processed by the compilation system. You can
specify more than one file. Use a space as a delimiter for multiple files.

i nker _options Indicates options directed to the linker.

Invoking the Compiler from the
Command Line with make

To run from the command line using Intel® C++ Compiler, make sure that / usr/ bi n is your path. If you
use the C shell, you can edit your . cshr c file and add

setenv PATH /usr/bin:<your path>
Then you can compile as

pronpt >nake -f your_nmakefile

44

Compiler Input Files

By default, the compiler recognizes .cc, . cpp, and . cxx files as C++ files. In examples, this
documentation uses the . cpp extension for C++ files. The compiler recognizes files with the . i and . c
extensions as C files. Also, the Intel® C++ Compiler recognizes the default filename extensions listed in

the table below.

Default Filename Extensions

Filename Interpretation Action

fil enane. object library Passed to linker
filenanme.i C or C++ source preprocessed and expanded by the C++ preprocessor Passed to compiler

fil enane. compiled object module Passed to linker
filenane. assembly file Assembled by the assembler

45

Default Behavior of the Compiler

Default Compiler Options

* Options specific to 1A-32 architecture

* Options specific to the Itanium(TM) architecture

* Options available for both IA-32 and Itanium(TM) architecture

Option Description Default Reference

-i po_obj Forces the compiler to create |OFF (IA-32) Interprocedural Optimization
re_al object files when used with | ON (Itanium-based systems) |(IPO)
-1 po.

-0l Enable optimizations. ON Optimization Choices

opennp_report{0]| 1|2
}

Controls the OpenMP*
parallelizer's diagnostic levels.

-opennp_reportl

Parallelization With OpenMP*

- pc64 Set internal FPU precisionto [ON
IA-32 only 53-bit significand.
-Qansi[-] Enable [disable] stating ANSI |ON
Itanium-based systems only compliance of the compiled
program and that optimizations
can be based on the ANSI
rules.
-sox[-] Enables [disables] the saving of |ON
1A-32 only compiler options and version
information in the executable
file. NOTE: This option is
maintained for compatibility only
on Itanium(TM)-based systems.
-t pp6 Targets the optimizations to the |ON Targeting a Processor and
IA-32 only Intel Pentium Pro, Pentium I| Extensions Support
and Pentium Il processors.
-vec[-] Enable [disable] the vectorizer. |ON

46

Option

Description

Default

Reference

-vec_report[n]
1A-32 only

Controls the amount of
vectorizer diagnostic
nformation.

® N =0 no diagnostic
information

® N =lindicates
vectorized loops
(DEFAULT)

. N =2 indicates
vectorized/non-
vectorized loops

* N =3indicates
vectorized/non-
vectorized loops and
prohibiting data
dependence
information

o N =4 indicates non-
vectorized loops

o N =5 indicates non-
vectorized loops and
prohibiting data

-vec_reportl

Vectorizer Quick Reference

constraint for structure and
union types as one of the
following: 1, 2, 4, 8, or 16 bytes.

-Wn Control diagnostics. -wl Supressing Warning Messages
® N =0 displays errors
(same as -w)
® N =1displays
warnings and errors
(DEFAULT)
* N =2displays
remarks, warnings,
and errors
-wnn Limits the number of errors Nn=100 Limiting the Number of Errors
displayed prior to aborting Reported
compilation to N
-Zp{ 1| 2| 4| 8] 16} Specifies the strictest alignment |- Zp16 Specifying Structure Tag

Alignments

47

Default Behavior of the Compiler

If you do not specify any options when you invoke the Intel® C++ Compiler, the compiler uses the
following default settings:

* Produces executable output with filename a. out .
* Invokes options specified in a configuration file first. See Configuration Files.
» Searches for include files using the INCLUDE variable.

* Searches for library files in directories specified by the LD_LI BRARY_PATH variable, if they are
not found in the current directory.

* Sets 8 bytes as the strictest alignment constraint for structures.
* Displays error and warning messages.

* Performs standard optimizations using the default - O2 option, as described in Optimization
Choices.

If the compiler does not recognize a command-line option, that option is ignored and a warning is
displayed. See Diagnostic Messages for detailed descriptions about system messages.

|A-32-Specific Default

The vectorizor (- vec) is on by default.

Compilation Phases

To produce the executable file f i | ename, the compiler performs by default the compile and link phases.
When invoked, the compiler driver determines which compilation phases to perform based on the
extension to the source filename and on the compilation options specified in the command line.

The compiler passes object files and any unrecognized filename to the linker. The linker then determines
whether the file is an object file (. 0) or a library (. a). The compiler driver handles all types of input files
correctly, thus it can be used to invoke any phase of compilation.

The relationship of the compiler to system-specific programming support tools is presented in the diagram
below.

48

Application Development Cycle

Plresze |
Tranzktich

Frase |l
Linking

Flreaze
Executicon

<

II__H—

Y

T

Tezt Edlitor

Sounse
Cocke

Compiler

Ohbiject

lib

lirik

Uszr
Library

Excutzble
Code

CM0aTid

49

Customizing Compilation Environment

Customizing the Compilation
Environment

For IA-32 and the Intel® Itanium(TM) architecture, you will need to set a compilation environment. To
customize the environment used during compilation, you can specify:

* Environment Variables -- the paths where the compiler can search for special files
* Configuration Files -- the options to use with each compilation
* Response Files -- the options and files to use for individual projects

* Include Files -- the names and locations of compilation tools

Environment Variables

You can customize your environment by specifying paths where the compiler can search for special files
such as libraries and include files.

* LD LI BRARY_PATH specifies the directory path for the math libraries. Also, the compiler calls
link, the GNU* linker, to produce an executable file from the object files. This linker searches the
path specified in the LD LI BRARY_PATH environment variable to find the libraries. Also, the
assembler relies on LD LI BRARY_PATH for the location of the associated libraries.

* PATH specifies the directory path for the compiler executable files.
* | NCLUDE specifies the directory path for the “include” files.

* | CCCFG specifies a configuration file the compiler should use instead of the default configuration
file for the 1A-32 compiler.

* ECCCFGspecifies a configuration file the compiler should use instead of the default configuration
file for the Itanium(TM) compiler.

* TMP specifies the directory in which to store temporary files. If the directory specified by TMP does
not exist, the compiler places the temporary files in the current directory.

* | A32ROOT (IA32-based systems) — If you choose to install the Intel® C++ Compiler to a location
other than the default location, you will need to modify the variable | A32ROOT in your
environment to point to this location. It should point to the directory containing the bi n, | i b, and
i ncl ude directories.

* | A64RQOOT (Itanium(TM)-based systems) -- If you choose to install the Intel C++ Compiler to a
location other than the default location, you will need to modify the variable | A64ROOT in your
environment to point to this location. It should point to the directory containing the bi n, | i b, and
i ncl ude directories.

50

Compilation Environment Options

The Intel C++ Compiler installation includes shell scripts that you can use to set environment variables.
From the command line, execute the shell script appropriate to your installation. You can find these
scripts at the following locations (assuming you installed to the default directories):

* 1A-32 Systems: /opt/intel/conpiler60/ia32/bin/iccvars.sh

* [tanium(TM)-based Systems: /opt/intel/conpiler60/ia64/bin/eccvars. sh

Running the Shell Scripts

Torunthe i ccvar s. sh script, enter the following on the command line:

pronpt: . /opt/intel/conpiler60/ia32/bin/iccvars.sh

If you want the iccvars.sh to run automatically when you start Linux, edit your .bash_profile file and add
the same line to the end of your file:

set up environnent for Intel Conpiler icc
/opt/intel/conpiler60/ia32/ bin/iccvars. sh

Configuration Files

You can decrease the time you spend entering command-line options and ensure consistency by using
the configuration file to automate often-used command line entries. You can insert any valid command-
line options into the configuration file. The compiler processes options in the configuration file in the order
they appear followed by the command-line options that you specify when you invoke the compiler.

ﬂNote

Be aware that options in the configuration file will be executed every time you run the compiler. If you
have varying option requirements for different projects, see Response Files.

How to Use Configuration Files for IA-32 Compilations

The following example illustrates how to write configuration files for 1A-32-targeted compilations. After you
have written the . CFGfile, simply ensure it is in the same directory as the compiler's executable file when
you run the compiler. The text following the pound (#) character is recognized as a comment. For 1A-32
compilations, the configuration file isi cc. cf g.

Sanple icc.cfg file.
Define preprocessor nacro MY_PRQIECT. -DMY_PROQIECT
Additional directories to be searched for include

files, before the default. -1 /project/include

51

How to Use Configuration Files for Compilations on Itanium(TM)-
based Systems

The following example illustrates how to write configuration files targeted for compilations on Itanium(TM)-
based systems. After you have written the . CFGfile, simply ensure it is in the same directory as the
compiler's executable file when you run the compiler. (The pound (#) character defines the text that
follows as a comment.) For compilations on Itanium(TM)-based systems, the configuration file is

ecc. cfg.

Sanple ecc.cfg file.
Define preprocessor macro MY_PRQJIECT. -DMY_PROJECT
Additional directories to be searched for include

files, before the default. -1 /project/include

Response Files

Use response files to specify options used during particular compilations, and to save this information in
individual files. Response files are invoked as an option in the command line. Options in a response file
are inserted in the command line at the point where the response file is invoked.

Response files are used to decrease the time spent entering command-line options, and to ensure
consistency by automating command-line entries. Use individual response files to maintain options for
specific projects; in this way you avoid editing the configuration file when changing projects.

Any number of options or flenames can be placed on a line in the response file. Several response files
can be referenced in the same command line. Use the pound character(#) to treat the rest of the line as a
comment.

The syntax for using response files is as follows:
* |A-32 Systems: pronpt >i cc @esponse_file fil enanes

* [tanium(TM)-based Systems: pronpt >ecc @ esponse_file fil enanes

f)Note

An "at" sign (@ must precede the name of the response file on the command line.

52

Include Files

By default, the compiler searches for the standard include files in the directories specified in the | NCLUDE
environment variable. You can indicate the location of include files in the configuration file.

How to Specify an Include Directory (-)

Use the - | di r ect or y option to specify an additional directory in which to search for include files. For
multiple search directories, multiple - | di r ect or y commands must be used. Included files are brought
into the program with a #i ncl ude preprocessor directive. The compiler searches directories for include
files in the following order:

» directory of the source file that contains the include
» directories specified by the - | option

» directories specified in the | NCLUDE environment variable

How to Remove Include Directories

Use the - X option to prevent the compiler from searching the default path specified by the | NCLUDE
environment variable.

You can use the - X option with the - | option to prevent the compiler from searching the default path for
include files and direct it to use an alternate path.

For example, to direct the compiler to search the path / al t /i ncl ude instead of the default path, do the
following:

* |A-32 Systems: pronpt>icc -X -1/alt/include newmain. cpp

* [tanium(TM)-based Systems: pronpt >ecc -X -1/alt/include newnai n. cpp

53

Customizing Compilation Process

Customizing Compilation Process
Overview

This section describes options that customize the compilation process—preprocessing, compiling, linking
and various compilation output and debug options.

Specifying Alternate Tools and Paths

You can direct the compiler to go outside default paths and tools to specify alternate tools for
preprocessing, compilation, assembly, and linking. Further, you can invoke options specific to your
alternate tools on the command line. The following sections explain how to use - Q ocat i on and -
Qopt i on to do this.

How to Specify an Alternate Component

Use - Q ocat i on to specify an alternate path for a tool. This option accepts two arguments using the
following syntax:

pronpt >- @ ocati on, tool, path

t ool Description

cpp Specifies the compiler front-end preprocessor.
c Specifies the C++ compiler.

asm Specifies the assembler.

| d Specifies the linker.

pat h is the complete path to the tool.

54

How to Pass Options to Other Programs (-Qoption, tool, optlist)

Use - Qopt i on to pass an option specified by opt | i st to a tool, where opt | i st is a comma-separated
list of options. The syntax for this command is the following:

pronpt >- Qoption, tool,optlist

t ool Description

cpp Specifies the compiler front-end preprocessor.
c Specifies the C++ compiler.

asm Specifies the assembler.

| d Specifies the linker.

-opt | i st Indicates one or more valid argument strings for the designated program. If the argument is a
command-line option, you must include the hyphen. If the argument contains a space or tab character,
you must replace the space or tab with a comma, and enclose the entire argument in quotation
characters ("). You must separate multiple arguments with commas. The following example directs the
linker to create a memory map when the compiler produces the executable file from the source.

* 1A-32 Systems: pronpt >i cc - Qoption, |ink, - Map, proto. map proto. cpp

* ltanium(TM)-based Systems: pr onpt >ecc - Qopti on, | i nk, - Map, prot o. map
proto.cpp

The - Qopti on, | i nk option in the preceding example is passing the - map option to the linker. This is an
explicit way to pass arguments to other tools in the compilation process.

Preprocessing

Preprocessing Overview

This section describes the options you can use to direct the operations of the preprocessor.
Preprocessing performs such tasks as macro substitution, conditional compilation, and file inclusion. The
compiler preprocesses files as an optional first phase of the compilation.

Preprocessor Options

Use the options in this section to control preprocessing from the command line. If you specify neither
option, the preprocessed source files are not saved but are passed directly to the compiler.

Option Description

- Anane[(val ue)] Associates a symbol Name with the specified sequence of val ues . Equivalent to an
#assert preprocessing directive.

- A- Causes all predefined macros (other than those beginning with __ and assertions to be inactive.

-C Preserves comments in preprocessed source output.

- Dnane[{ =| #} val ue] |Defines the macro nanme and associates it with the specified val ue . The default (- Dnane
) defines a macro with aval ue of 1.

55

Option Description

-E Directs the preprocessor to expand your source module and write the result to standard output.

-EP Same as - E but does not include #1 i ne directives in the output.

-P Directs the preprocessor to expand your source module and store the result in a file in the current
directory.

- Unane Suppresses any automatic definition for the specified macro nane .

Preprocessing Only

Use either the - E or the - P option to preprocess your source files without compiling them.
When you specify the - E option, the compiler's preprocessor expands your source module and writes the
result to standard output. The preprocessed source contains #| i ne directives, which the compiler uses

to determine the source file and line number during its next pass. For example, to preprocess two source
files and write them to stdout, enter the following command:

* |A-32 Systems: pronpt >i cc -E progl. cpp prog2.cpp
e ltanium(TM)-based Systems: pronpt >ecc -E progl. cpp prog2.cpp

When you specify the - P option, the preprocessor expands your source module and stores the result in a
file in the current directory. There is no way to change the default name. The preprocessor uses the name
of each source file with the . i extension. For example, the following command creates two files named
progl.i and prog2. i, which you can use as input to another compilation:

* 1A-32 Systems: pronpt >i cc -P progl. cpp prog2.cpp

* [tanium(TM)-based Systems: pronpt >ecc - P progl. cpp prog2.cpp

The - EP option can be used in combination with - E or - P. It directs the preprocessor to not include
#1 i ne directives in the output. Specifying - EP alone is the same as specifying - E - EP.

ACaution

When you use the - P option, any existing files with the same name and extension are overwritten.

Preserving Comments in Preprocessed Source Output

Use the - C option to preserve comments in your preprocessed source output.

Searching for Include Files

By default, the compiler searches for the standard include files in the directories specified in the | NCLUDE
environment variable. You can indicate the location of include files in the configuration file.

56

How to Specify an Include Directory

Use the - | di r ect or y option to specify an additional directory in which to search for include files. For
multiple search directories, multiple - | di r ect or y commands must be used. Included files are brought
into the program with a #i ncl ude preprocessor directive. The compiler searches directories for include
files in the following order:

» directory of the source file that contains the include
» directories specified by the - 1 option

» directories specified in the | NCLUDE environment variable

How to Remove Include Directories

Use the - X option to prevent the compiler from searching the default path specified by the | NCLUDE
environment variable.

You can use the - X option with the - | option to prevent the compiler from searching the default path for
include files and direct it to use an alternate path.

For example, to direct the compiler to search the path / al t /i ncl ude instead of the default path, do the
following:

* 1A-32 Systems: pronmpt >icc -X -1/alt/include newrain. cpp

* ltanium(TM)-based Systems: pronpt >ecc -X -1/alt/include newnain. cpp

Defining Macros

You can use the - A and - D options to define the assertion and macro names to be used during
preprocessing. The - U option directs the preprocessor to suppress an automatic definition of a macro.

Use the - A option to make an assertion. This option performs the same function as the #assert
preprocessor directive. The form of this option is:

- Anane[(val ue)]

Argument Description

name indicates an identifier for the assertion

val ue indicates aval ue for the assertion. Ifaval ue is specified, it should be quoted, along with the
parentheses delimiting it.

For example, to make an assertion for the identifier fruit with the value orange,banana use the following
command:

* |A-32 Systems: pronpt >i cc -A"fruit(orange, banana)" progl. cpp

* [tanium(TM)-based Systems: pronpt >ecc - A"fruit (orange, banana)" progl. cpp

57

The compiler provides a number of predefined macros. For a list of predefined macros available to the
Intel® C++ Compiler, see the Predefined Macros table below.

Enter - A- to suppress all predefined macros, except for those beginning with the double underscore.

Use the - D option to define a macro. This option performs the same function as the #define preprocessor
directive. The form of this option is:

- Dnane[{ =| #} val ue]

Argument Description

nane The name of the macro to define.

val ue Indicates a value to be substituted for name. If you do not enter a value, name is set to 1. The value should be
quoted if it contains non-alphanumerics.

For example, to define a macro called SIZE with the value 100 use the following command:

* 1A-32 Systems: pronpt >i cc - DSI ZE=100 progl. cpp

e Itanium(TM)-based Systems: pr onpt >ecc - DSI ZE=100 progl. cpp
Use the - Unane option to suppress any automatic definition for the specified name. The - U option
performs the same function as a #undef preprocessor directive. It can be used to undefine any macro, in

addition to the predefined onces.

For more details about preprocessor directives, see a language reference such as C: A Reference
Manual.

Predefined Macros
The predefined macros available for the Intel C++ Compiler compilations targeted for IA-32- and
Itanium(TM)-based systems are described in the tables below. The Default column describes whether the
macro is enabled (ON) or disabled (OFF) by default. The Disable column lists the option that disables the
macro; no indicates that the macro cannot be disabled.

* Predefined macros for compilations targeted for 1A-32 systems

* Predefined macros for compilations targeted for Itanium(TM)-based systems

58

Predefined Macros for Compilations Targeted for IA-32 Systems

Macro Name Value Disable Description / When Used

I NTEL_COWPI LER 600 no Defines the compiler version. Defined as 600 for the Intel
C++ Compiler V6.0. Always defined.

I CC 600 no Enables the Intel C++ Compiler. Assigned value refers to
version of the compiler (e.g., 600 is 6.00). Supported for
legacy reasons. Use __ | NTEL_COVPI LERinstead.

__cplusplus C++ only no Defined when compiling C++ source.

EDG 1 no

Predefined Macros for Compilations Targeted

for ltanium(TM)-based Systems

Macro Name Default Disable Description / When Used

__I NTEL_COWPI LER 600 no Defines the compiler version. Defined as 600 for the Intel
C++ Compiler V6.0. Always defined.

__ECC 600 no Enables the Intel C++ Compiler. Assigned value refers to
version of the compiler (e.g., 600 is 6.00). Supported for
legacy reasons. Use | NTEL_COWPI LER instead.

__cplusplus C++ only no Enables compilation of C++ source.

| NTEGRAL_NMAX _BI TS 64 -U Indicates support forthe i nt 64 type.

_M | A64 64100 -U Indicates the value for the preprocessor identifier to

reflect the ltanium(TM) architecture.

59

Compiling

Compilation Overview

This section describes the Intel® C++ Compiler options that determine the compilation process and
output. By default, the compiler converts source code directly to an executable file. Appropriate options
allow you to control the process and obtain desired output file produced by the compiler.

Having control of the compilation process means, for example, that you can create a file at any of the
compilation phases such as assembly, object, or executable with - P or - ¢ options. Or you can name the
output file or designate a set of options that are passed to the linker with the - S, - 0 options. If you specify

a phase-limiting option, the compiler produces a separate output file representing the output of the last
phase that completes for each primary input file.

You can use the command-line options discussed as tools to display and check for certain aspects of the
compiler's behavior.

The options in this section provide you with the following capabilities:
* monitor the compilation to a phase or to a stage within a phase

* name the output files or directories
Compilation Options

Controlling Compilation

If no errors occur during processing, you can use the output files from a particular phase as input to a
later compiler invocation. The table below describes the options to control the output.

Last Phase Option Compiler Input [Compiler Output
Completed
compile only -C source Compile to object only (. 0), do not link.
-S source Generate assembly files with . S suffix and stops the

compilation process.

syntax checking -synt ax source files diagnostic list
preprocessed files

linking (default) source files executable file, map file
preprocessed files
assembly files
object files

library

preprocessing -P,-Eor-Ep source files preprocessed files

60

Monitoring Data Settings

The options described below provide monitoring the outcome of Intel compiler-generated code without
interfering with the way your program runs.

Specifying Structure Tag Alignments

You can specify an alignment constraint for structures and unions in two ways:
* place a pack pragma in your source file, or
* enter the alignment option on the command line

Both specifications change structure tag alignment constraints.

Use the - Zp option to determine the alignment constraint for structure declarations. Generally, smaller
constraints result in smaller data sections while larger constraints support faster execution.

The form of the - Zp option is:
-Zpn

The alignment constraint is indicated by one of the following values.

n=1 1 byte.
n=2 2 bytes.
n=4 4 bytes.
n=8 8 bytes
n=16 16 bytes.

For example, to specify 2 bytes as the alignment constraint for all structures and unions in the file
progl. cpp, use the following command:

* |A-32 Systems: pronpt >i cc -Zp2 progl. cpp
* [tanium(TM)-based Systems: pr onpt >ecc -Zp2 progl. cpp
Allocation of Zero-initialized Variables
By default, variables explicitly initialized with zeros are placed in the BSS section. But using the -

nobss_i ni t option, you can place any variables that are explicitly initialized with zeros in the DATA
section if required.

Avoiding Incorrect Decoding of Certain Instructions (IA-32 Only)

Some instructions have 2-byte opcodes in which the first byte contains Of. In rare cases, the Pentium®
processor can decode these instructions incorrectly. Specify the - Of _check option to avoid the incorrect
decoding of these instructions. The work-around implemented in the Intel® C++ Compiler avoids
generating the susceptible instructions.

61

Assembly File Listing Example

This topic provides examples of IA-32 and Itanium(TM) architecture assembly file listings and explains
how to read them.

IA-32 Assembly Listing Example

$B1$6: ; Preds $B1%9
nov eax, edx ;6. 26
shl d eax, esi, 11 ;6. 26
or eax, -2147483648 1 6. 26
neg ecx ;6. 26
add ecx, 1054 ;6. 26
shr eax, cl ;6. 26
t est edx, edx ;6. 26
j ge $B1%$5 ; Prob 50% ; 6. 26
; LCE eax ebx ebp ed

The following list describes the annotations:
* The; Preds annotation lists all the basic-blocks that are predecessors of this basic-block.

* The; 6. 26 annotation occurs next to every instruction and indicates the source line#.column
number that this instruction is associated with. When a 0 appears it means that there is no source
information associated with that particular instruction.

* The; Prob annotation indicates the probability that the conditional jump is taken. This is based
either upon a "guess" by the compiler or from profile information from a - pr of _use compilation.

* The; LCEline is the live-on-exit registers. Generally only the integer registers, xmm, and mm
registers are printed.

ltanium(TM) Architecture Assembly Listing Example

The following is an example of a portion of an assembly file listing for compilations targeted for
Itanium(TM)-based systems:

! LImi
alloc r3d=ar.pf=,0,3,1,0 A0 25
add sp=-32,3p FA0 25
wosy £33=h0 A EZ5
Vo4 omib
add r35=Z, 0 L
mov r9=r0 Fiv Za
br.call.dpnt bO=bark#:: P
H

62

The following list describes the annotations:

* { identifies the beginning of an bundle.

e . nmm and. nm b identify the instruction template types; . ni indicates two memory and one
integer instructions; . m b indicates one memory, one integer, and one branch instruction.

* } identifies the end of an instruction bundle.

e Dbr.call.dpnt

bO=bar k# identifies a call to the function bark.

* ;; identifies the end of an instruction group.

* The number following the colon (:) in the comment at the end of each instruction indicates the
source line number corresponding to that assembly language instruction.

Linking

This topic describes the options that allow you to control and customize the linking with tools and libraries
and define the output of the linking process.

Option

Description

-Ldirectory

Instruct linker to search directory for libraries.

-Qoption,tool,list

Passes an argument list to another program in the compilation sequence, such as
the assembler or linker.

- shared This linker option instructs the compiler to build a Dynamic Shared Object (DSO)
instead of an executable.

-i _dynam c This linker option can be used to specify that all Intel-provided libraries should be
linked dynamically. The comparison of the following commands illustrates the
effects of this option.

-Bstatic This linker option is used to statically link libraries at compile time. Compared to
dynamic linking, results in larger executables.

- Bdynam c This linker option is used to dynamically link libraries at run time. Compared to

static linking, results in smaller executables.

63

Suppressing Linking

Use the - ¢ option to suppress linking. For example, entering the following command produces the object
flesfile.oandfil e2. o:

* 1A-32 Systems: prompt>icc -c file.cpp file2.cpp

* ltanium(TM)-based Systems: pronpt >ecc -c file.cpp file2.cpp

E'}Note

The preceding command does not link these files to produce an executable file.
Debugging

Debugging Options Overview

For compilations targeted to IA-32 processor systems, the compiler uses - Q0 as the default when you
specify - g. Specifying the - g or - Q0 option automatically enables the -f p option for I1A-32-targeted
compilations. (Option - f p is not used for compilations targeted for Itanium(TM)-based systems.)

The - f p option (applies to IA-32 compilations only) is disabled by default or when - OL or - Q2 is specified
and allows the compiler to use the EBP register as a general purpose register in optimizations. However,
most debuggers expect EBP to be used as a stack frame pointer, and cannot produce a stack backtrace
unless this is so. The - f p option instructs the compiler to generate code for 1A-32-targeted compilations
without turning off optimization, so that a debugger can still produce a stack backtrace. Using this option
disables use of the EBP register in optimizations, and can result in slightly less efficient code.

Options Descriptions

-g Debugging information produced, - Q0 enabled, - f P enabled for IA-32-targeted
compilations.

-g - Debugging information produced, - O2 optimizations enabled.

-g -8B -fp Debugging information produced, - O3 optimizations enabled, - f P enabled for
IA-32-targeted compilations.

-g -ip Limited debugging information produced, - i P option enabled.

64

Preparing for Debugging

Use the - g option to direct the compiler to generate code to support symbolic debugging. For example:
* 1A-32 Systems: pronpt>icc -g progl.cpp
* ltanium(TM)-based Systems: pronpt >ecc -g progl. cpp

The compiler does not support the generation of debugging information in assembly files. If you specify
the - g option, the resulting object file will contain debugging information the assembily file will not.

Support for Symbolic Debugging

The compiler lets you generate code to support symbolic debugging while the - O1, or - O2 optimization
options are specified on the command line along with - g. However, you can receive these unexpected
results:

* If you specify the - O1, or - O2 options with the - g option, some of the debugging information
returned may be inaccurate as a side-effect of optimization.

* If you specify the - O1, or - O2 options, the - f p option will be disabled.

Parsing for Syntax Only

Use the - synt ax option to stop processing source files after they have been parsed for C++ language

errors. This option provides a method to quickly check whether sources are syntactically and semantically

correct. The compiler creates no output file. In the following example, the compiler checks a file named
progl. cpp. Any diagnostics appear on the standard error output.

* 1A-32 Systems: pronpt >i cc -syntax progl.cpp

* [tanium(TM)-based Systems: pronpt >ecc -syntax progl. cpp

65

Language Conformance

Conformance to the C Standard

You can set the Intel® C++ Compiler to accept either
* C code that strictly adheres to the ANSI/ISO standard, or
* C code that contains extensions to this standard.

The compiler is set by default to accept extensions and not be limited to the ANSI/ISO standard.

Understanding the ANSI/ISO Standard C Dialect

The Intel C++ Compiler provides conformance to the ANSI/ISO standard for C language compilation
(ISO/IEC 9899:1990). This standard requires that conforming C compilers accept minimum translation
limits. This compiler exceeds all of the ANSI/ISO requirements for minimum translation limits.

Understanding the Extensions to ANSI/ISO Standard C Dialect

When you set the compiler to accept extensions to the ANSI/ISO standard, the compiler can process the
following extensions:

Extension Type Description

Files and data storage Input files with no declarations. Incomplete array types for the last member of a
structure, except when this is the only member of the structure. Incomplete struct
or union type file-scope arrays. Note: The struct and union types must be
completed before the array is subscripted. In addition, if the array is defined in the
compilation, these types must be subscripted by the end of the compilation. enum
tag names you define. You can declare an enum tag name and then define it later
in the source file. Initializer expressions not enclosed in braces though they
initialize any of the following: a full static array, structure, or union. (Standard C
required the braces.)

Pointers In initializers, pointer constant values cast to an integral type if the integral type is
large enough to contain it. In integral constant expressions, integer constants cast
to a pointer type and then cast back to an integral type. Assignments of pointers to
integers and to other incompatible pointer types without explicit casts. Fields
selected in the form p->m when the p variable is a pointer, including when p does
not point to a struct or union that contains m. (All definitions of field must have the
same type and offset within their structure or union.) Fields selected in the form
x.m, including when x is not a structure or union containing m when (1) variable x
is not a structure or union containing m and (2) the x variable is an Ivalue. (All
definitions of field must have the same type and offset within their structure or
union.)

Types and syntax Bit fields with enum base types or integral types other than int or unsigned int. long
float as a synonym for double. Arbitrary text at the end of preprocessing directives.
Numbers that do not comply with the pp-number syntax, because numbers are
scanned according to the syntax for numbers when extensions are allowed.
Example: The compiler would scan 0x123e+1 as three tokens. Under strict ANSI
conformance mode, the compiler would use the pp-number syntax and scan this
number as one invalid token.

Predicates #assert and #unassert directives to define and test predicate names.

66

Extension Type

Description

Syntax with warnings

No warning given for an extra comma at the end of an enum list. Warning given
when omitting the final semicolon preceding the closing brace(}) of a structure or
union. Warning given for a right brace immediately following a label definition.
(Normally, a statement must follow a legal definition.) No warning given for an
empty declaration, a semicolon with nothing preceding it.

Semantics with warnings

Differences in assignments and pointers between pointers to types that are
interchangeable but not identical, such as unsigned char* and char*. The compiler
will not issue a warning in this case. A string constant assigned to a pointer to any
kind of character. Comparison using >, >=, <, or <= operators between pointers to
void and other kinds of pointers, without using an explicit type cast. (Strict ANSI
dialect mode requires such comparisons using == or != and issues no warnings.)
Inline assembly code inserted using the asm keyword. (Strict ANSI dialect mode
requires the __asm keyword.) Freestanding tag declarations in the parameter
declaration list for a function with old-style parameters.

How to Set the Compiler for Extended C Dialect

You set the compiler to accept extensions to the ANSI/ISO standard C code by using the - Ze option.

Macros Included with the Compiler

The ANSI/ISO standard for C language requires that certain predefined macros be supplied with
conforming compilers. The following table lists the macros that the Intel C++ Compiler supplies in

accordance with this standard:

Macro Description

~_cplusplus Defines C++ programs only.

~ DATE The date of compilation. As a string literal in the form Mhm dd yyyy.

__FILE A string literal representing the name of the file being compiled.

__LINE__ The current line number as a decimal constant.

~__STDC__ The constant 1 when you set the compiler to accept only standard ANSI
conformance. _This macro is not defined for use when you set the compiler to
accept extensions.

 TIMVE The time of compilation. As a string literal in the form hh: mm ss.

__TI MESTAMP__ The date and time of the last modification of the current source file in the form:

The compiler provides predefined macros in addition to the predefined macros required by the standard.

67

Conformance to the C++ Standard

The Intel® C++ Compiler conforms to the ANSI/ISO standard (ISO/IEC 14882:1998) for the C++
language, with the following exceptions:

* Two-phase name binding in templates, as described in [t enp. r es] and [t enp. dep] of the
standard, is implemented only with - Za compiler option.

* Universal character set escapes (for example, \ uabcd) are not implemented.

* The export keyword for templates is not implemented.

68

Optimizations

Optimization Levels

Setting Optimization Levels

Each of the command-line options: - O- OL, - O2 and - O3 turn on several compiler optimizations. - Oand
- Ol are similar and are only mentioned for compatibility with other compilers. The following table
summarizes the optimizations that the compiler applies when you invoke - OL, - O2, or - O3 optimizations.

Option Optimization Affected Aspect of Program

-0, -2 global register allocation register use

-0, -2 instruction scheduling instruction reordering

-0, -2 register variable detection register use

-0, -2 common subexpression elimination constants and expression evaluation

-0, -2 dead-code elimination instruction sequencing

-0, -2 variable renaming register use

-0, -2 copy propagation register use

-0, -2 constant propagation constants and expression evaluation

-0, -2 strength reduction-induction variable simplification instruction, selection-sequencing
-0, -2 tail recursion elimination calls, further optimization

-0, -2 software pipelining calls, further optimization

-3 prefetching, scalar replacement, loop transformations |memory access, instruction parallelism, predication,

software pipelining

69

For IA-32 and Itanium(TM) architectures, the options can behave in a different way. To specify the
optimizations for your program, use options for depending on the target architecture as follows.

IA-32 and Itanium(TM) compilers

-0 -0, -2 Confines optimizations to the procedural level. Turns ON intrinsics inlining. All three optimizations are
equal.
-3 Enables - O2 option with more aggressive optimizations, for example:

e prefetching
® scalar replacement
® loop transformations

Optimizes for maximum speed, but may not improve performance for some programs.

Restricting Optimizations

The following options restrict or preclude the compiler's ability to optimize your program.

Option

Description

-0

Disables all optimizations.

-nolib_inline

Disable inline expansion of intrinsic functions.

70

Floating-point Optimizations

Restricting Floating-point Arithmetic Precision

The - nmp option restricts some optimizations to maintain declared precision and to ensure that floating-
point arithmetic conforms more closely to the ANSI and IEEE standards.

For most programs, specifying this option adversely affects performance. If you are not sure whether your
application needs this option, try compiling and running your program both with and without it to evaluate
the effects on performance versus precision.

Specifying this option has the following effects on program compilation:
* User variables declared as floating-point types are not assigned to registers.
* Floating-point arithmetic comparisons conform to IEEE 754 except for NaN behavior.

* The exact operations specified in the code are performed. For example, division is never changed
to multiplication by the reciprocal.

* The compiler performs floating-point operations in the order specified without reassociation.

* The compiler does not perform the constant folding on floating-point values. Constant folding also
eliminates any multiplication by 1, division by 1, and addition or subtraction of 0. For example,
code that adds 0.0 to a number is executed exactly as written. Compile-time floating-point
arithmetic is not performed to ensure that floating-point exceptions are also maintained.

* For IA-32 systems, whenever an expression is spilled, it is spilled as 80 bits (EXTENDED
PRECISION), not 64 bits (DOUBLE PRECISION). Floating-point operations conform to IEEE 754.
When assignments to type REAL and DOUBLE PRECISION are made, the precision is rounded
from 80 bits (EXTENDED) down to 32 bits (REAL) or 64 bits (DOUBLE PRECISION). When you
do not specify - Q0, the extra bits of precision are not always rounded away before the variable is
reused.

* Even if vectorization is enabled by the - xK, - xXW - axK, or - axWoptions, the compiler does not
vectorize reduction loops (loops computing the dot product) and loops with mixed precision types.

71

Processor Dispatch Extensions Support
(IA-32 only)

Targeting a Processor and Extensions Support

This section describes targeting a processor and processor dispatch options. -t pp{ 5| 6] 7} optimizes
non-specifically for the IA-32 processor, while - x{i | M K| W and - ax{i | M K| W provide support to
generate processor instruction extensions that are specific to the architecture.

Option Description
-tpp{5| 6] 7} Schedules instructions for optimal performance on the architecture specified by 5, 6, 7
* -t pp5Pentium® processor.
* -t pp6Pentium Pro, Pentium I, and Pentium Il processors. Default.
* -t pp7Pentium 4 processor.
-x{i | MK W Generates specialized code to run exclusively on the processors supporting the extensions indicated by
the i , M K, Wecodes.
-ax{i | MKW Generates specialized code to run exclusively on the processors supporting the extensions indicated by

the i , M K, Wcodes while also generating generic 1A-32 code in the same executable.

For example, on a Pentium Il processor, if you have mostly integer code and only a small portion of
floating-point code, you may want to compile with - axMrather than - axK because MMX(TM) technology
extensions perform the best with integer data and the optimized code will run on a larger subset of Intel

processors.

The - ax and - x options are backward compatible with the extensions supported. The Intel® Pentium 4
processor can run code targeted to any of the previous processors specified by K, M ori .

Targeting a Processor (IA-32 only)

The Intel® C++ Compiler lets you choose whether to optimize the performance of your application for
specific processors or to ensure your application can execute on a range of processors.

Optimizing for a Specific Processor without Excluding Others

Use the - t pp{ n} option to optimize your application's performance for specific processors. Regardless
of which - t pp{ n} suboption you choose, your application is optimized to use all the benefits of that
processor with the resulting binary file still capable of running on any of the processors listed.

To optimize for... Use...
Pentium® and Pentium processor with MMX(TM) technology -t pp5
Pentium Pro, Pentium Il and Pentium 111 -t pp6 (default)
Pentium 4 Processor -t pp7

72

For example, the following commands compile and optimize the source program pr og. cpp for the
Pentium Pro processor:

pronpt> icc prog.cpp
pronpt> icc -tpp6 prog.cpp

Exclusive Specialized Code (IA-32 only)

The - x{i | M K| W option specifies the minimum set of processor extensions required to exist on
processors on which you execute your program. The resulting code can contain unconditional use of the
specified processor extensions. When you use - x{i | M K| W the code generated by the compiler might
not execute correctly on IA-32 processors that lack the specified extensions.

The following example compiles the program nypr og. cpp, using the i extension. This means the
program will require Intel® Pentium® Pro, Pentium Il, or later, processors to execute.

pronpt> icc -Q2 tpp6 -xi -0 nyprog nyprog.cpp

The resulting program, nmy pr og, might not execute on a Pentium processor, but will execute on Pentium
Pro, Pentium II, Pentium Ill, and Pentium 4 processors.

ACaution

If a program compiled with - x{i | M K| W is executed on a processor that lacks the specified
extensions, it can fail with an illegal instruction exception, or display other unexpected behavior.

-X Summary

To Optimize for... Use this option
Pentium Pro and Pentium Il processors, which use the CMOV, FCMOV, and FCOM instructions - Xi

Pentium processors with MMX(TM) technology instructions (does not imply i instructions). -xM

Pentium Ill processor with the Streaming SIMD Extensions, implies i and Minstructions - xK

Pentium 4 processor with the Streaming SIMD Extensions 2, implies i , M and K instructions - xW

Specialized Code with -ax{i|M|K|W}

When the - ax{i | M K| W option is used, your compiled application includes processor-specific
extensions. When the compiled application is run, it detects the extensions supported by the processor:

* |f the processor supports the specialized extensions, the extensions are executed.

* If the processor does not support the specialized extensions, the extensions are not executed,
and a more generic version of the code is executed instead.

Applications compiled with - ax{i | M K| W have increased code size, but increased performance over
standard optimized code.

ﬂNote

Applications that you compile with this option will execute on any Intel 32-bit processor. Such
compilations are, however, subject to any exclusive specialized code restrictions you impose during
compilation with the - x option.

73

-ax Summary

To Optimize for... Use this option
Intel® Pentium® Pro and Pentium Il processors, which use the CMOV and FCMOV, and - axi

FCOM instructions

Pentium processors with MMX(TM) technology instructions -axM

Pentium Ill processor with the Streaming SIMD Extensions, implies i and Minstructions -axK

Pentium 4 processor with the Streaming SIMD Extensions 2, implies i , M and K instructions |- axW

Checking for Performance Gain

The - ax{i | M K| W option directs the compiler to find opportunities to generate separate versions of
functions that use instructions supported on the specified processors. If the compiler finds such an
opportunity, it first checks whether generating a processor-specific version of a function results in a
performance gain. If this is the case, the compiler generates both a processor-specific version of a
function and a generic version of that function that will run on any IA-32 architecture processor.

At run time, one of the two versions is chosen to execute depending on the processor the program is
currently running on. In this way, the program can get large performance gains on more advanced
processors, while still working properly on older processors.

The disadvantages of using - ax{i | M K| W are:

* The size of the compiled binary increases because it contains both a processor-specific version
and a generic version of the code.

* The runtime checks to determine which code to run slightly affect performance.

74

Combining Processor Target and Dispatch Options
(IA-32 only)

The following table shows how to combine processor target and dispatch options to compile applications
with different optimizations and exclusions.

Optimize ...without excluding...
exclusively
for... Intel® Pentium Pentium Pro |Pentium Il Pentium Il Pentium 4

Pentium® Processor Processor Processor Processor Processor

Processor with

MMX(TM)
technology

Pentium -tpp5 -t pp5 -t pp6 -t pp6 -t pp6 -tpp7
Processor
Pentium N-A -tpp5,-xM [-tpp6,-xM |[-tpp6,-xM |-t pp6,-xM |-tpp7,-xM
Processor with
MMX(TM)
technology
Pentium Pro N-A N-A -t pp6,- xi -t pp6.- xi -t pp6,- xi -t pp7,-xi
Processor
Pentium I N-A N-A N-A -tpp6,-xi M [-tpp6,-xi M |-t pp7,-xi M
Processor
Pentium 11l N-A N-A N-A N-A -tpp6,-xK |-t pp7.,-xK
Processor
Pentium 4 N-A N-A N-A N-A N-A -t pp7,-xW
Processor

Example of -x and -ax Combinations

If you wanted your application to

* always require the MMX(TM) technology extensions

* use Pentium Pro processor extensions when the processor it is run on offers it

e and to not use them when it does not

you could generate such an application with the following command line:

pronpt>icc -2 -xM -axi

nyprog. cpp

- xMabove restricts the application to running on Pentium processors with MMX(TM) technology or later
processors. If you wanted to enable the application to run on earlier generations of Intel 32-bit processors
as well, you would use the following command line:

pronpt>icc -2 -axi M nyprog. cpp

Note that this specifically optimized code will run only on processors that support both the i and M

extensions.

75

Interprocedural Optimizations

Use -i p and - i po to enable interprocedural optimizations (IPO), which allow the compiler to analyze
your code to determine where you can benefit from the optimizations listed in tables that follow.

IA-32 and Itanium(TM)-based applications

Optimization Affected Aspect of Program

inline function expansion calls, jumps, branches, and loops

interprocedural constant propagation arguments, global variables, and return values

monitoring module-level static variables further optimizations, loop invariant code

dead code elimination code size

propagation of function characteristics call deletion and call movement

multifile optimization affects the same aspects as - i p, but across multiple files

IA-32 applications only

Optimization Affected Aspect of Program
passing arguments in registers calls, register usage
loop-invariant code motion further optimizations, loop invariant code

Inline function expansion is one of the main optimizations performed by the interprocedural optimizer. For
function calls that the compiler believes are frequently executed, the compiler might decide to replace the
instructions of the call with code for the function itself.

With - i p, the compiler performs inline function expansion for calls to procedures defined within the
current source file. However, when you use - i po to specify multifile IPO, the compiler performs inline
function expansion for calls to procedures defined in separate files.

The IPO optimizations are disabled by default.

Multifile IPO

Multifile IPO Overview

Multifile IPO obtains potential optimization information from individual program modules of a multifile
program. Using the information, the compiler performs optimizations across modules.

Building a program is divided into two phases: compilation and linkage. Multifile IPO performs different
work depending on whether the compilation, linkage or both are performed.

76

Compilation Phase

As each source file is compiled, multifile IPO stores an intermediate representation (IR) of the source
code in the object file, which includes summary information used for optimization.

By default, the compiler produces "mock" object files during the compilation phase of multifile IPO.
Generating mock files instead of real object files reduces the time spent in the multifile IPO compilation
phase. Each mock object file contains the IR for its corresponding source file, but no real code or data.
These mock objects must be linked using the - i po option and i cc, or using the xi | d tool.

'-F.)Note

Failure to link "mock" objects with i cc, - i po, or xi | d will result in linkage errors. There are situations
where mock object files cannot be used. See Compilation with Real Object Files for more information.

Linkage Phase

When you specify - i po, the compiler is invoked a final time before the linker. The compiler performs
multifile IPO across all object files that have an IR.

E'}Note

The compiler does not support multifile IPO for static libraries (. a files). See Compilation with Real Object
Files for more information.

- i po enables the driver and compiler to attempt detecting a whole program automatically. If a whole
program is detected, the interprocedural constant propagation, stack frame alignment, data layout and
padding of common blocks optimizations perform more efficiently, while more dead functions get deleted.
This option is safe.

-wWp_i po is a whole program assertion flag that tells the compiler the whole program is present. It
enables multifile optimization with the whole program assumption that all user variables and user
functions seen in the compiled sources are referenced only within those sources. This is an unsafe
option. The user must guarantee that this assumption is safe.

Compilation with Real Object Files

In certain situations you might need to generate real object files with - i po. To force the compiler to
produce real object files instead of "mock" ones with IPO, you must specify -i po_obj in addition to - i po.

Use of - i po_obj is necessary under the following conditions:

* The objects produced by the compilation phase of - i po will be placed in a static library without
theuseof xidorxild -1ib. The compiler does not support multifile IPO for static libraries, so
all static libraries are passed to the linker. Linking with a static library that contains "mock" object
files will result in linkage errors because the objects do not contain real code or data. Specifying -
i po_obj causes the compiler to generate object files that can be used in static libraries.

* Alternatively, if you create the static library using xi I d or xi | d - i b, then the resulting static
library will work as a normal library.

* The objects produced by the compilation phase of - i po might be linked without the - i po option
and without the use of xi | d.

77

* You want to generate an assembly listing for each source file (using - S) while compiling with -
i po. If you use -i po with - S, but without - i po_obj , the compiler issues a warning and an
empty assembly file is produced for each compiled source file.

Creating a Multifile IPO Executable

This topic describes how to enable multifile IPO for compilations targeted for 1A-32 and Itanium(TM)-
based systems.

Procedure for IA-32 Systems

Compile your modules with - i po as follows:
pronpt>icc -ipo -c a.cpp b.cpp c.cpp

Use - ¢ to stop compilation after generating . o files. Each object file has the IR for the corresponding
source file. With preceding results, you can now optimize interprocedurally:

pronpt>icc -ipo a.out b.out c.out

Multifile IPO is applied only to modules that have an IR, otherwise the object file passes to the link stage.
For efficiency, combine steps 1 and 2:

pronpt>icc -ipo a.cpp b.cpp c.cpp

Procedure for Itanium(TM)-based Systems
Compile your modules with - i po as follows:

pronpt >ecc -ipo -c a.cpp b.cpp c.cpp

Use - ¢ to stop compilation after generating . o files. Each object file has the IR for the corresponding
source file. With preceding results, you can now optimize interprocedurally:

pronpt >ecc -ipo a.out b.out c.out

Multifile IPO is applied only to modules that have an IR, otherwise the object file passes to link stage. For
efficiency, combine steps 1 and 2:

pronpt >ecc -ipo a.cpp b.cpp c.cpp

See Using Profile-Guided Optimization: An Example for a description of how to use multifile IPO with
profile information for further optimization.

78

Creating a Multifile IPO Executable Using a Project Makefile

Most applications use a makefile or something similar to call a linker such as | i nk. This is done
automatically when you compile and link with the compiler. Therefore, when - i po must result in a
separate linking step, you must use the Intel linker driver xi | d instead, as follows:

pronpt>xild -ipo |ink_conmand_line

-i po optional; enables additional IPO diagnostic output

i nk_command_| i ne |[is your linker command line

Use of - i po is optional with xi | d for Multifile IPO in providing additional diagnostic output. You can use
the xi | d syntax when you use a makefile instead of step 2 in the example Creating a Multifile IPO
Executable. The following example places the multifile IPO executable in file name:

pronpt>xild -o:filename a.out b.out c.out

'-F.)Note

The - i po option can reorder object files and linker arguments on the command line. Therefore, if your
program relies on a precise order of arguments on the command line, - i po can cause your program to
have incorrect behavior.

Creating a Library from IPO Objects

Normally, libraries are created using a library manager such as ar . Given a list of objects, the library
manager will insert the objects into a named library to be used in subsequent link steps.

pronpt >xi ar user.a a.out b.out
A library named user . a will be created containing a. out and b. o.

If, however, the objects have been created using - i po - c, then the objects will not contain a valid object
but only the intermediate representation (IR) for that object file.

pronpt>icc -ipo -c a.cpp b.cpp

will produce a. out and b. o that only contains IR to be used in a link time compilation. The library
manager will not allow these to be inserted in a library.

In this case you must use the Intel library driver xi | d - ar . This program will invoke the compiler on the
IR saved in the object file and generate a valid object that can be inserted in a library.

pronpt>xild -0 user.a

79

Analyzing the Effects of Multifile IPO

The -i po_c and -i po_S options are useful for analyzing the effects of multifile IPO, or when
experimenting with multifile IPO between modules that do not make up a complete program.

Use the - i po_c option to optimize across files and produce an object file. This option performs
optimizations as described for - i po, but stops prior to the final link stage, leaving an optimized object file.
The default name for this file is i po_out . o.

Use the - i po_S option to optimize across files and produce an assembly file. This option performs
optimizations as described for - i po, but stops prior to the final link stage, leaving an optimized assembly
file. The default name for this file isi po_out . s.

See Inline Expansion of Functions.

Using -ip with -Qoption Specifiers

Use - Qopt i on with the applicable keywords to select particular inline expansions and loop optimizations.
The option must be entered with a - i p or - i po specification, as follows:

-ip -Qoption,tool, opts]
where t ool is C++ (c) and opt s are - Qopt i on specifiers (see below).
-option Specifiers
If you specify -i p or -i po without any - Qopt i on qualification, the compiler
e expands functions in line
* propagates constant arguments
* passes arguments in registers
* monitors module-level static variables.

You can refine interprocedural optimizations by using the following - Qopt i on specifiers. To have an
effect, the - Qopt i on option must be entered with either - i p or - i po also specified, as in this example:

-ip -Qoption,c,ip_specifier

where i p_speci fi er is one of the specifiers described in the table that follows.

80

-option Specifiers

-ip_args_in_regs=FALSE

Disables the passing of arguments in registers. By default, external functions can
pass arguments in registers when called locally. Normally, only static functions can
pass arguments in registers, provided the address of the function is not taken and
the function does not use a variable number of arguments.

-ip_ninl_max_stats=n

Sets the valid max number of intermediate language statements for a function that
is expanded in line. The number N is a positive integer. The number of
intermediate language statements usually exceeds the actual number of source
language statements. The default is set to the maximum number of 200.

-ip_ninl_mn_stats=n

Sets the valid min number of intermediate language statements for a function that
is expanded in line. The number N is a positive integer. The default value for
ip_ninl_mn_statsis:

* IA-32compile:ip_ninl _mn stats=7

* ltanium(TM) compiler:i p_ninl _m n_stats =15

-ip_ninl_nmax_total stats=n

Sets the maximum increase inthe t Ot al _st at S. The number of intermediate
language statements for each function that is expanded in line. The number is a
positive integer. By default, each function can increase to a maximum of 5000
statements.

-ip_no_external ref

Indicates that the source file contains the main program and does not contain
functions that are referenced by external functions. If you do not specify this
option, the compiler retains an original copy of each expanded in-line function.

The following command activates procedural and interprocedural optimizations on sour ce. cpp and sets
the maximum increase in the number of intermediate language statements to 5 for each function:

pronmpt>icc -ip -Qoption,c,-ip_ninl_nmax_stats=5 source. cpp

Inline Expansion of Funtions

Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with the options shown in

the following summary.

-ip_no_inlining This option is only useful if - i is also specified. In this case, - i p_no_i nl i ni ng disables
inlining that would result from the - | P interprocedural optimizations, but has no effect on other
interprocedural optimizations.

i p_no_pinlining Disables partial inlining; can be used if - i p or - i PO is also specified.

81

Criteria for Inline Function Expansion

For a routine to be considered for inlining, it has to meet certain minimum criteria. There are criteria to be
met by the call-site, the caller, and the callee.

The call-site is the site of the call to the function that might be inlined.
The caller is the function that contains the call-site.

The callee is the function being called that might be inlined.

Minimum call-site criteria;

The number of actual arguments must match the number of formal arguments of the callee.
The number of return values must be the same as the callees' number.
The data types of the actual and formal arguments must be compatible.

No multi-lingual inlining is allowed. Caller and callee must be written in the same source
language.

Minimum criteria for the caller:

At most, 2000 intermediate statements will be inlined into the caller from all the call-sites being

inlined to the caller. You can change this value by specifying the option - Qopt i on, c, -
i p_ninl_max_total stats=new val ue

The function must be called or have its address used if it is declared as static. Otherwise, it will be
deleted.

Minimum criteria for the callee:

82

Routines that contain the following substrings in their names are not inlined: abort, alloca, denied,
err, exit, fail, fatal, fault, halt, init, interrupt, invalid, quit, rare, stop, timeout, trace, trap, and warn.
Once these criteria are met, the compiler picks the routines whose inline expansions provide the
greatest benefit to program performance. This is done using the following default heuristics.
When you use profile-guided optimizations, a number of other heuristics are used.

The default heuristic focuses on call-sites in loops or calls to functions containing loops.

When profile information is available, the focus changes to the most frequently executed call-
sites. Also, the default inline heuristic does not allow the inlining of functions with more than 230
intermediate statements, or the number specified by the option - Qopt i on, c, -

i p_ninl_nmax_stats.

The default inline heuristic stops when it detects direct recursion.

The default heuristic will always inline very small functions that meet the minimum inline criteria.
By default, functions are inlined. This limit can be modified with the option - Qopt i on, c, -

i p_ninl_mn_stats. Default for Itanium(TM)-based applications: i p_ninl _min_stats =
15. Default for IA-32 applications: i p_ni nl _m n_stats =7.

Profile-guided Optimizations

Profile-guided Optimizations Overview

Profile-guided optimizations (PGO) tell the compiler which areas of an application are most frequently
executed. By knowing these areas, the compiler is able to be more selective in optimizing the application.
For example, the use of PGO often enables the compiler to make better decisions about function inlining,
thereby increasing the effectiveness of interprocedural optimizations.

Instrumented Program

Profile-guided optimization creates an instrumented program from your source code and special code
from the compiler. Each time this instrumented code is executed, the compiler generates a dynamic
information file. When you compile a second time, the dynamic information files are merged into a
summary file. Using the profile information in this file, the compiler attempts to optimize the execution of
the most heavily travelled paths in the program.

Unlike other optimizations, such as those used strictly for size or speed, the results of IPO and PGO vary.
This is due to each program having a different profile and different opportunities for optimizations. The
guidelines provided here help you determine if you can benefit by using IPO and PGO.

Added Performance with PGO
In this version of the Intel® C++ Compiler, PGO is improved in the following ways:
* Register allocation uses the profile information to optimize the location of spill code.

* For direct function calls, branch prediction is improved by identifying the most likely targets. With
the Pentium® 4 processor's longer pipeline, improved branch prediction translates to higher
performance gains.

* The compiler detects and does not vectorize loops that execute only a small number of iterations,
reducing the run time overhead that vectorization might otherwise add.

Profile-guided Optimizations Methodology

PGO works best for code with many frequently executed branches that are difficult to predict at compile
time. An example is code that is heavy with error-checking in which the error conditions are false most of
the time. The "cold" error-handling code can be placed such that the branch is rarely mispredicted.
Eliminating the interleaving of "hot" and "cold" code improves instruction cache behavior. For example,
the use of PGO often allows the compiler to make better decisions about function inlining, thereby
increasing the effectiveness of interprocedural optimizations.

83

PGO Phases

The PGO methodology requires three phases:

1. instrumentation compilation and linking with - pr of _gen[x]

2. instrumented execution by running the executable

3. feedback compilation with - pr of _use
A key factor in deciding whether you want to use PGO lies in knowing which sections of your code are the
most heavily used. If the data set provided to your program is very consistent and it elicits a similar
behavior on every execution, then PGO can probably help optimize your program execution. However,
different data sets can elicit different algorithms to be called. This can cause the behavior of your program
to vary from one execution to the next.
In cases where your code behavior differs greatly between executions, PGO may not provide noticeable

benefits. You have to ensure that the benefit of the profile information is worth the effort required to
maintain up-to-date profiles.

Basic PGO Options

Option Description

- prof _gen[x] Instructs the compiler to produce instrumented code in your object files in preparation for instrumented
execution. NOTE: The dynamic information files are produced in phase 2 when you run the instrumented
executable.

- pr of _use Instructs the compiler to produce a profile-optimized executable and merges available dynamic
information (. dy n) files into a pgopt i . dpi file. If you perform multiple executions of the
instrumented program, - pr of _use merges the dynamic information files again and overwrites the
previous pgopt i . dpi file.

Example of Profile-guided Optimization

The following is an example of the basic PGO phases:

Instrumentation Compilation and Linking

Use -prof_gen to produce an executable with instrumented information. Use also the -prof_dir option as
recommended for most programs, especially if the application includes the source files located in multiple
directories. -prof_dir ensures that the profile information is generated in one consistent place. For
example:

IA-32 Systems

pronpt>icc -prof_gen -prof_dirc:\profdata -c al.cpp a2.cpp a3.cpp
pronpt>icc al.o a2.0 a3.o0

Itanium(TM)-based Systems

pronpt >ecc -prof_gen -prof _dirc:\profdata -c al.cpp a2.cpp a3.cpp
pronpt >ecc al.o a2.0 a3.o0

In place of the second command, you could use the linker directly to produce the instrumented program.

84

Instrumented Execution

Run your instrumented program with a representative set of data to create a dynamic information file.

pr onpt >a. out

The resulting dynamic information file has a unique name and . dyn suffix every time you run a. out . The

instrumented file helps predict how the program runs with a particular set of data. You can run the
program more than once with different input data.

Feedback Compilation

Compile and link the source files with - pr of _use to use the dynamic information to optimize your
program according to its profile:

IA-32 Systems

pronpt>i cc -prof_use -ipo al.cpp a2.cpp a3.cpp

Itanium(TM)-based Systems

pronpt >ecc -prof _use -ipo al.cpp a2.cpp a3.cpp

Besides the optimization, the compiler produces a pgopt i . dpi file. You typically specify the default

optimizations (- O2) for phase 1, and specify more advanced optimizations (-i p or - i po) for phase 3.
This example used - Q2 in phase 1 and - Q2 -i p in phase 3.

f)Note

The compiler ignores the - i p or the - i po options with - pr of _gen[x] .

PGO Environment Variables

The "Profile-Guided Optimization Environment Variables" table below describes environment values to

determine the directory in which to store dynamic information files or whether to overwrite pgopti . dpi .

Refer to your operating system documentation for instructions on how to specify environment values.

Profile-guided Optimization Environment Variables

Variable Description

PROF_DI R Specifies the directory in which dynamic information files are created. This variable applies to all
three phases of the profiling process.

the pgopti.dpi file if you want to use additional dynamic information files.

PROF_NO_CLOBBER Alters the feedback compilation phase slightly. By default, during the feedback compilation phase,
the compiler merges the data from all dynamic information files and creates a new pgopti.dpifile if
.dyn files are newer than an existing pgopti.dpifile. When this variable is set, the compiler does not
overwrite the existing pgopti.dpi file. Instead, the compiler issues a warning and you must remove

85

Function Order List

Function Order List Usage Guidelines

A function order list is a text file that specifies the order in which the linker should link the non-static
functions of your program. This improves the performance of your program by reducing paging and
improving code locality. Profile-guided optimizations support the generation of a function order list to be
used by the linker. The compiler determines the order using profile information.

To enable the Intel® C++ Compiler and pr of or der tool to generate a function order list, you must use
the - prof _gen[x] and - pr of _di r options described in the table below.

Option Description

- prof _gen[x] Generates an instrumented object file and creates a static profile information file (. Spi), which
contains source position information for the calls of each compiled function. This information,
combined with the dynamic profile information from the . dpi file, enables optimized ordering of
functions. When you use - pr of _gen[X] instead of - pr of _gen[X] , you can use the
pr of or der tool to create a function order list for the linker. However, -pr of _gen[x] also
requires more memory at runtime, produces larger . dyn files, and disables execution of parallel
make files.

-prof _dir dirnanme |Specifies the directory where . dyn files are to be created. The default is the directory where the
program is compiled. The specified directory must already exist. You should specify the same -
pr of _di r option for both the instrumentation and feedback compilations. If you move the

. dyn files, you need to specify the new path.

You will need to use the utilities pr of mer ge and pr of or der described in Utilities for Profile-Guided
Optimization.

Use the following guidelines to create a function order list:
* The order list only affects the order of non-static functions.

* Donotuse-prof _gen[x] to compile two files from the same program simultaneously. This
means that you cannot use the - pr of _gen[x] option with parallel makefile utilities.

* You must compile to enable function-level linking. This option is active when you specify - O, - OL,
-2, or - G3.

Function Order List Example

Assume you have a C program that consists of filesfil el. c and fi | e2. ¢ and that you have created a
directory for the profile data files in / hone/ usr / pr of dat a. Do the following to generate and use a
function order list.

1. Compile your program by specifying - pr of _gen[x] and - pr of _di r: IA-32 Systems
pronpt >i cc - oMYPROG - prof _genx -prof _dir /hone/usr/profdata filel.c
file2.c ltanium(TM)-based Systems pronpt >ecc - oMYPROG - prof genx -prof _dir
/ horme/ usr/profdata filel.c file2.c

2. Run the instrumented program on one or more sets of input data pr onpt >. / MYPROG

3. The program produces a . dyn file each time it is executed.

4. Merge the data from one or more runs of the instrumented program using the pr of ner ge tool to
produce the pgopti . dpi file. pronpt >prof nerge -prof_dir /hone/usr/profdata

86

5. Generate the function order list using the pr of or der tool. By default, the function order list is
produced in the file pr of ord. t xt. pronpt >proforder -prof _dir
/ hone/ usr/ profdata -o MYPROG t xt

6. Compile your application with profile feedback by specifying the - pr of _use and the / ORDER
option to the linker. Again, use the - pr of _di r option to specify the location of the profile files.
IA-32 Systems pronpt>i cc - oOMYPROG - prof _use -prof_dir /home/usr/profdata
filel.c file2.c -link /ORDER @WPROG. t xt Itanium(TM)-based Systems
pronpt >ecc - oMYPROG - prof _use -prof _dir /honme/usr/profdata filel.c
file2.c -link / ORDER @WPRCG. t xt

Comparison of Function Order Lists and IPO Code Layout

The Intel C++ Compiler provides two methods of optimizing the layout of functions in the executable:
1. use of a function order list
2. useof-ipo

Each method has its advantages. A function order list, created with pr of or der, enables you to optimize
the layout of non-static functions; that is, external and library functions whose names are exposed to the
linker. The linker cannot directly affect the layout order for static functions because the names of these
functions are not available in the object files.

On the other hand, using - i po allows you to optimize the layout of all static or extern functions compiled

with the Intel C++ Compiler. The compiler cannot affect the layout order for functions it does not compile,
such as library functions. The function layout optimization is performed automatically when IPO is active.

Function Order List Effects

Function Type Code Layout with -ipo |Function Ordering with proforder
Static X No effect.

Extern X X

Library No effect. X

Function Call to Dump Profile Data Explicitly

As part of the instrumented execution phase of profile-guided optimization, the instrumented program
writes profile data to the dynamic information file (. dyn file). The file is written after the instrumented
program returns normally from mai n() or calls the standard C exi t function. For programs that do not
terminate normally, the _PGOPTI _Pr of _Dunp function is provided. During the instrumentation
compilation (- pr of _gen), you can add a call to this function to your program. You should add the
following function prototype prior to the call:

void _cdec _PGOPTI _Prof Dunp(void);

ﬂNote

You must remove the call or comment it out prior to the feedback compilation with - pr of _use.

87

Utilities for Profile-guided Optimization
The pr of ner ge and pr of or der tools are used when generating a function order list.

The profmerge Tool
Use pr of mer ge to merge dynamic profile information (. dyn) files. The compiler executes this tool
automatically during the feedback compilation phase when you specify - pr of _use. You can also invoke
it as follows:

* 1A-32 Systems: pronpt >prof nerge [-prof_dir dir_nane]

* [tanium(TM)-based Systems: pronpt >prof merge -em -p64 [-prof_dir dir_nane]

This merges all . dyn files in the current directory or the directory specified by - pr of _di r, and produces
the summary file pgopt i . dpi .

The proforder Tool

Use pr of or der to generate a function order list for use with the / ORDER linker option. The syntax for
this tool is as follows:

pronpt >prof order [-prof_dir dir_name] [-o0 order_file]

Argument Description

di r _name the directory containing the profile files (. dpi ,. dyn, and. spi)

order_fil e |the optional name of the function order list file. The default name is pr of or d. t xt .

The pr of or der utility is used as part of the feedback compilation phase to improve program
performance.

88

PGO API: Profile Information Generation Support

PGO API Support Overview

Profile Information Generation Support lets you control of the generation of profile information during the
instrumented execution phase of profile-guided optimizations. Normally, profile information is generated
by an instrumented application when it terminates by calling the standard exi t () function. The functions
described in this section may be necessary in assuring that profile information is generated in the
following situations:

* when the instrumented application exits using a non-standard exit routine
* when instrumented application is a non-terminating application where exi t () is never called
* when you want control of when the profile information is generated

This section includes descriptions of the functions and environment variable that comprise Profile
Information Generation Support. The functions are available by inserting #i ncl ude <pgouser. h> at
the top of any source file where the functions may be used.

Dumping Profile Information
voi d _PGOPTI _Prof Dunp(void);
Description

This function dumps the profile information collected by the instrumented application. The profile
information is recorded in a . dyn file.

Recommended Usage

Insert a single call to this function in the body of the function which terminates your application. Normally,
_PGOPTI _Pr of _Dunp should be called just once. It is also possible to use this function in conjunction
with PGOPTI _Prof Reset () to generate multiple . dyn files (presumably from multiple sets of input
data).

Example

/* selectively collect profile information for the portion
of the application involved in processing input data
*/
i nput _data = get_input_data();
whil e (input_data) {
_PGOPTI _Prof _Reset ();
process_dat a(i nput _data);

_PGOPTI _Prof _Dunmp();
i nput _data = get i nput_data();

89

Resetting the Dynamic Profile Counters
void PGOPTI _Prof Reset(void);

Description

This function resets the dynamic profile counters.
Recommended Usage

Use this function to clear the profile counters prior to collecting profile information on a section of the
instrumented application. See the example under PGOPTI _Pr of _Dunp() .

Dumping and Resetting Profile Information
voi d _PGOPTI _Prof Dunp_And_Reset (void);
Description

This function may be called more than once. Each call will dump the profile information to a new . dyn
file. The dynamic profile counters are then reset, and execution of the instrumented application
continues.

Recommended Usage

Periodic calls to this function allows a non-terminating application to generate one or more profile
information files. These files are merged during the feedback phase of profile-guided optimization. The
direct use of this function allows your application to control precisely when the profile information is
generated.

Interval Profile Dumping
void _PGOPTI _Set Interval Prof Dunp(int interval);

Description

This function activates Interval Profile Dumping and sets the approximate frequency at which dumps will
occur. Thei nt erval parameter is measured in milliseconds and specifies the time interval at which
profile dumping will occur. For example, if i nt er val is set to 5000, then a profile dump and reset will
occur approximately every 5 seconds. The interval is approximate because the time check controlling the
dump and reset is only performed upon entry to any instrumented function in your application.

ﬂNote

* Setting i nt er val to zero or a negative number will disable interval profile dumping.

* Setting i nt erval to a very small value may cause the instrumented application to spend nearly
all of its time dumping profile information. Be sure to seti nt er val to a large enough value so
that the application can perform actual work and collect substantial profile information.

90

Recommended Usage

Call this function at the start of a non-terminating application to initiate Interval Profile Dumping. Note that
an alternative method of initiating Interval Profile Dumping is by setting the environment variable,
PROF_DUMP_I NTERVAL, to the desired i nt er val value prior to starting the application. The intention of
Interval Profile Dumping is to allow a non-terminating application to be profiled with minimal changes to
the application source code.

Environment Variable

PROF_DUMP_| NTERVAL

This environment variable may be used to initiate Interval Profile Dumping in an instrumented application.
See the Recommended Usage of _PGOPTI _Set _| nt erval _Prof _Dunp for more information.

91

High-level Language Optimizations
(HLO)

HLO Overview

High-level optimizations (HLO) exploit the properties of source code constructs, such as loops and arrays,
in the applications developed in high-level programming languages, such as Fortran and C++. They
include loop interchange, loop fusion, loop unrolling, loop distribution, unroll-and-jam, blocking, data
prefetch, scalar replacement, data layout optimizations and some others. The option that turns on the
high-level optimizations is - C3.

IA-32 and Itanium(TM)-based applications

-3 Enable - O2 option plus more aggressive optimizations, for example, loop transformation and prefetching. - O3
optimizes for maximum speed, but may not improve performance for some programs.

IA-32 applications

-3 In addition, in conjunction with the vectorization options, - ax{ M K| W and - x{ M K| W, - O3 causes the
compiler to perform more aggressive data dependency analysis than for - O2. This may result in longer
compilation times.

Loop Transformations

All these transformations are supported by data dependence. These techniques also include induction
variable elimination, constant propagation, copy propagation, forward substitution, and dead code
elimination. The loop transformation techniques include:

* loop normalization

* loop reversal

* loop interchange and permutation

* loop skewing

* loop distribution

* loop fusion

* scalar replacement

In addition to the loop transformations listed for both 1A-32 and Itanium(TM) architectures above, the
Itanium(TM) architecture allows collapsing techniques.

92

Loop Unrolling

You can unroll loops and specify the maximum number of times you want the compiler to do so.

How to Enable Loop Unrolling

You use the - unr ol | [n] option to unroll loops. n determines the maximum number of times for the
unrolling operation. This applies only to loops that the compiler determines should be unrolled. Omit n to
let the compiler decide whether to perform unrolling or not.

The following example unrolls a loop at most four times:

IA-32 Systems: pronpt>icc -unroll4 a.cpp

How to Disable Loop Unrolling
Disable loop unrolling by setting n to 0.
The following example disables loop unrolling:

IA-32 Systems: pronpt>icc -unroll 0 a.cpp

Absence of Loop-carried Memory Dependency with
IVDEP Directive

For Itanium(TM)-based applications, the - i vdep_par al | el option indicates there is absolutely no loop-
carried memory dependency in the loop where | VDEP directive is specified. This technique is useful for
some sparse matrix applications. For example, the following loop requires -i vdep_paral | el in
addition to the directive | VDEP to indicate there is no loop-carried dependencies.

#pragma ivdep

for (i=1; i<n; i++) {
e[ix[2][1]] = e[ix[2][i]]+1.0;
e[ix[3][i]] = e[ix[3][i]]+2.0;

}

The following example shows that using this option and the | VDEP directive ensures there is no loop-
carried dependency for the store intoa(). /a[] for C/

#pragnma i vdep
for (j=0; j<n; j++) {
a[b[j]] = a[b[j]] + 1;

93

Parallelization

Parallelization Options Overview

For shared memory parallel programming, the Intel® C++ Compiler supports the OpenMP, version 1.0
API. The Parallelization capability of the Intel C++ Compiler uses the following options.

Option Description

-parall el Enables the auto-parallelizer to generate multi-threaded code for loops that can be
safely executed in parallel. Default: OFF

- par _t hreshol d{n} Sets a threshold for the auto-parallelization of loops based on the probability of
profitable execution of the loop in parallel, N=0 to 100. Default: OFF

-par _report{0| 1| 2| 3} Controls the auto-parallelizer's diagnostic levels.
Default: - par _report 1.

-openm Enables the parallelizer to generate multi-threaded code based on the OpenMP
directives. Default: OFF

-opennp_report{0| 1] 2} Controls the OpenMP parallelizer's diagnostic levels. Default: -
opennp_report1

Auto Parallelization

In addition to the low-level "hand-thread" approach based on threading API for Win32* and Itanium™-
based Windows* 2000, the Intel® C++ Compiler with the auto-parallelization feature and a high-level
symmetric multi-rpocessing (SMP) programming model enable the user with an easy way to exploit the
parallelism on SMP systems.

Enabling Auto-parallelizer

To enable auto-parallelizer, use the - par al | el option. The - par al | el option detects parallel loops
capable of being executed safely in parallel and automatically generates multithreaded code for these
loops. Automatic parallelization relieves the user from having to deal with the low-level details of iteration
partitioning, data sharing, thread scheduling and synchronizations. It also provides the benefit of the
performance available from multiprocessor systems.

Guidelines for Effective Auto-parallelization Usage
Enhance the power and effectiveness of the auto-parallelizer by following these coding guidelines:

* Expose the trip count of loops whenever possible; specifically use constants where the trip count
is known and save loop parameters in local variables.

* Avoid placing structures inside loop bodies that the compiler may assume to carry dependent
data, for example, procedure calls or global references.

94

Auto-parallelization Environment Variables

Option Description Default
OVP_NUM THREADS |Controls the number of threads used. Number of processors currently installed in the system.
OMP_SCHEDULE Specifies the type of run time scheduling. STATIC

Auto-parallelizer's Diagnhostic

The - par _report{0]| 1| 2| 3} option controls the auto-parallelizer's diagnostic levels 0, 1, 2, or 3 as
follows:

e -par_report0 =no diagnostic information is displayed.
* -par_report 1l =indicates loops successfully auto-parallelized (default).
* -par_report 2 =loops successfully and unsccessfully auto-parallelized.

e -par_report3 =same as 2 plus additional information about any proven or assumed
dependences inhibiting auto-parallelization.

Threshold for Auto-parallelization

The - Qpar _t hr eshol d{ n} option sets a threshold for the auto-parallelization of loops based on the
probability of profitable execution of the loop in parallel, n=0 to 100. Default is n=75. This option is used
for loops whose computation work volume cannot be determined at compile-time.

e -Qoar_threshol dO - loops get auto-parallelized regardless of computation work volume.

* -Qpar_threshol d100 - loops get auto-parallelized only if profitable parallel execution is almost
certain.

The intermediate 1 to 99 values represent the percentage probability for profitable speedup. For example,
n=50 would mean parallelize only if there is a 50% probability of the code speeding up if executed in
parallel. The compiler applies a heuristic that tries to balance the overhead of creating multiple threads
versus the amount of work available to be shared amongst the threads.

Parallelization with OpenMP*

The OpenMP* C/C++ API has recently emerged as the de facto standard for shared memory, parallel
programming. It shelters you from having to deal with the low-level details of iteration partitioning, data
sharing, thread scheduling, and synchronization. The Intel® C++ Compiler supports the OpenMP* API
version 1.0 and performs code transformation to generate multithreaded code automatically as
determined by your OpenMP* directive annotations to the program.

ﬂNote

As with many advanced features of compilers, you must be sure to properly understand the functionality
of the auto-parallelization switches in order to use them effectively and avoid unwanted program
behavior.

95

OpenMP* Parallelization Reference

Option

Description

- opennp

Enables the parallelizer to generate multi-threaded code based on the OpenMP* directives.
The code can be executed in parallel on both uniprocessor and multiprocessor systems.
The - Opennp option only works at an optimization level of - O2 (the default) or higher.

-opennp_report{0| 1| 2}

Controls the output of diagnostic messages. The level of the message output is controlled

by O, 1, or2.
* 0 = no diagnostic information is displayed.

. 1 = display diagnostics indicating loops, regions, and sections successfully
parallelized (default).

e 2 =same as 1 plus diagnostics indicating master construct, single construct,
critical sections, order construct, atomic directive, etc. successfully handled.

OpenMP* Standard Options

For complete information on the OpenMP* standard, visit the http://www.openmp.org Web site. The Intel
Extensions to OpenMP* topic describes the extensions to the standard that have been added by Intel in

the Intel® C++ Compiler.

OpenMP* C/C++ Directives

An OpenMP* directive has the form:

#pragma onp directive [directive clause . . .]

The following tables list and describe OpenMP* directives and clauses.

Directive Description

Par al | el Defines a parallel region.

For Identifies an iterative work-sharing construct that specifies a region in which the iterations of the
associated loop should be executed in parallel.

secti ons Identifies a non-iterative work-sharing constuct that specifies a set of constucts that are to be
divided among threads in a team.

section Indicates that the associated code block should be executed in parallel.

singl e Identifies a construct that specifies that the associated structured block is executed by only one
thread in the team.

parall el for A shortcut for a parallel region that contains a single for directive.

par all el sections Provides a shortcut form for specifying a parallel region containing a single sections directive.

mast er Identifies a constuct that specifies a structured block that is executed by the master thread of the
team.

critical Identifies a construct that restricts execution of the associated structured block to a single thread

at a time.

96

Directive Description

barri er Synchronizes all the threads in a team.

atom c Ensures that a specific memory location is updated atomically.

flush Specifies a "cross-thread" sequence point at which the implementation is required to ensure that

all the threads in a team have a consistent view of certain objects in memory.

t hreadprivate

Makes the named file-scope or namespace-scope variables specified private to a thread but file-
scope visible within the thread.

or der ed The structured block following an ordered directive
Clauses Description
private Declares variables to be private to each thread in a team.

firstprivate

A private copy of the private variable is created for each thread. In addition, each new private
object is initialized with the value of the original object.

| astprivate

A private copy of the private variable is created for each thread. In addition, the last iteration's
value of each lastprivate is assigned to the original object.

shar ed Shares variables among all the threads in a team.

def aul t Allows you to affect the data-scope attributes of variables.

reduction Performs a reduction on scalar variables.

nowai t Specifies that threads that finish the loop early may continue executing code after the loop without
waiting for the remaining threads to finish.

if Ifi f (scal ar_| ogi cal _expressi on) clause is present, the enclosed code block is
executed in parallel only if the Scal ar _| ogi cal _expr essi on is true. Otherwise, the
code block is serialized.

or der ed Must be present when ordered directives are contained in the dynamic extent of the for construct.

schedul e Specifies how iterations of the loop are divided among the threads of the team.

copyin Provides a mechanism to assign the same name to t hr eadpr i vat e variables for each

thread in the team executing the parallel region.

OpenMP* Environment Variables

Variable

Description Default

OVP_SCHEDULE

Sets the run-time schedule type and chunk size. STATIC

OVP_NUM_THREADS

Sets the number of threads to use during execution. Number of processors

OVP_DYNAM C Enables or disables the dynamic adjustment of the number of FALSE
threads.
OVP_NESTED Enables or disables nested parallelism. FALSE

97

OpenMP* Run Time Library Routines

OpenMP* provides several run time library routines to assist you in managing your program in parallel
mode. Many of these run time library routines have corresponding environment variables that can be set
as defaults. The run time library routines allow you to dynamically change these factors to assist in
controlling your program. In all cases, a call to a run time library routine overrides any corresponding

environment variable.

The following table specifies the interface to these routines. The names for the routines are in user
namespace. onp. h is provided in the include directory of your compiler installation. There are definitions
for two different locks, onp_| ock _t and onp_nest | ock_t, which are used by the functions in the

table.

Function

Description

voi d onp_set_num t hreads(int num_t hreads)

Dynamically set the number of threads to
use for this region.

int onp_get _num t hreads(voi d)

Determine what the current number of
threads is that is allowed to execute a
region.

int onp_get max_t hreads(void)

Obtains the maximum number of threads
ever allowed with this OpenMP*
implementation.

int onp_get thread _nun{void)

Determines the unique thread number of the
thread currently executing this section of
code.

i nt onp_get _num procs(voi d)

Determines the number of processors on the
current machine.

int onp_in_parallel(void)

Returns non-zero if it is called within the
dynamic extent of a parallel region executing
in parallel, otherwise it returns zero.

voi d onp_set _dynam c(int dynam c_t hreads)

Enable or disable dynamic adjustment of the
number of threads used to execute a parallel
region. If dynamni ¢_t hr eads is non-
zero, dynamic threads are enabled. If
dynam c_t hr eads is zero, dynamic
threads are disabled.

i nt onp_get _dynam c(voi d)

Returns non-zero if dynamic thread
adjustment is enabled and returns zero
otherwise.

voi d onp_set _nested(int nested)

Enable or disable nested parallelism. If
parameter is non-zero, enable. Default is
disabled.

int onp_get nested(void)

Always returns zero in the current version of
compiler.

void onp_init_lock(onmp_lock t *Ilock)

Initialize a unique lock and set lock to point
to it.

voi d onp_destroy_ | ock(onmp_l ock _t *I ock)

Disassociate lock from any locks.

98

Function

Description

voi d onp_set | ock(onp_lock t *Iock)

Force the executing thread to wait until the
lock associated with lock is available. The
thread is granted ownership of the lock when
it becomes available.

voi d onp_unset | ock(onp_l ock t *Iock)

Release executing thread from ownership of
lock associated with lock. lock must be
initialized viaonp_i ni t _| ock(), and
behavior undefined if executing thread does
not own the lock associated with lock.

int onp_test lock(onp_lock t *Ilock);

Attempt to set lock associated with lock. If
successful, return non-zero. lock must be
initialized viaonp_i ni t _| ock().

void onp_init _nest |ock(onp_nest |ock t

*| ock)

Initialize a unique nested lock and set lock to
point to it.

voi d onp_destroy_nest | ock(onmp_nest |ock t *I|ock)

Disassociate the nested lock lock from any
locks.

voi d onp_set nest | ock(onp_nest | ock t

*| ock)

Force the executing thread to wait until the
lock associated with lock is available. The
thread is granted ownership of the lock when
it becomes available

voi d onp_unset nest | ock(onp_nest | ock

t *l ock)

Release executing thread from ownership of
lock associated with lock if count is zero.
lock must be initialized via
onp_init_nest | ock().Behavior
is undefined if executing thread does not
own the lock associated with lock.

int onp_test nest | ock(onp_nest |ock t

*| ock)

Attempt to set lock associated with lock. If
successful, return nesting count, otherwise
return zero. lock must be initialized via

onp_init_Iock().

Intel Extensions to OpenMP*

For complete information on the OpenMP* standard, visit the Web site http://www.openmp.org. This topic
describes the extensions to the standard that have been added by Intel in the Intel® C++ Compiler.

Environment Variables

Environment Variable |Description

KMP_STACKSI ZE Used to set the number of bytes that will be allocated for each parallel thread to use as its private
stack.
KMP_BLOCKTI ME Used to set the integer value of time, in milliseconds, that the libraries wait after completing the

execution of a parallel region before putting threads to sleep.

KMP_SPI N_COUNT Used to help fine-tune the critical section.

99

Thread-level malloc()

The Intel C++ Compiler implements an extension to the OpenMP* run-time library to allow threads to
allocate memory from a heap local to each thread.

The memory allocated by these routines must also be freed by these routines. While it is legal for the
memory to be allocated by one thread and freed by a different thread, this mode of operation has a slight
performance penalty.

The interface is identical to the mal | oc() interface except the entry points are prefixed with knp_, as
shown below:

#i ncl ude onp. h
void * knp_mal |l oc(size t);
void * knp_calloc(size t, size t);
void * knp_realloc(void *, size t);

voi d knmp_free(void *);

100

Vectorization (IA-32 only)

Vectorization Overview

The vectorizer is a component of the Intel® C++ Compiler that automatically uses SIMD instructions in
the MMX(TM), SSE, and SSEZ2 instruction sets. The vectorizer detects operations in the program that can
be done in parallel, and then converts the sequential program to process 2, 4, 8, or 16 elements in one
operation, depending on the data type.

This section provides guidelines, option descriptions, and examples for the Intel® C++ Compiler
vectorization on 1A-32 systems only. The following list summarizes this section's contents.

* A quick reference of vectorization functionality and features
* Descriptions of compiler switches to control vectorization
* Descriptions of the C++ language features to control vectorization
* Discussion and general guidelines on vectorization levels:
* Automatic vectorization
* Vectorization with user intervention

* Examples demonstrating typical vectorization issues and resolutions

Vectorization Key Programming Guidelines

The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD) processing
automatically. Review these guidelines and restrictions, see code examples in further topics, and check
them against your code to eliminate ambiguities that prevent the compiler from achieving optimal
vectorization.

Guidelines for loop bodies:
* Use straight-line code (a single basic block)

* Use vector data only; that is, arrays and invariant expressions on the right hand side of
assignments. Array references can appear on the left hand side of assignments.

* Use only assignment statements
Avoid the following in loop bodies:
* Function calls
* Unvectorizable operations
* Mixing vectorizable types in the same loop

* Data-dependent loop exit conditions

101

Preparing Your Code for Vectorization

To make your code vectorizable, you will often need to make some changes to your loops. However, you
should make only the changes needed to enable vectorization and no others. In particular, you should
avoid these common changes:

* Do not unroll your loops, the compiler does this automatically.

* Do not decompose one loop with several statements in the body into several single-statement
loops.

Restrictions

Hardware. The compiler is limited by restrictions imposed by the underlying hardware. In the case of
Streaming SIMD Extensions, the vector memory operations are limited to st ri de- 1 accesses with a
preference to 16-byte-aligned memory references. This means that if the compiler abstractly recognizes a
loop as vectorizable, it still might not vectorize it for a distinct target architecture.

Style. The style in which you write source code can inhibit optimization. For example, a common problem
with global pointers is that they often prevent the compiler from being able to prove two memory
references at distinct locations. Consequently, this prevents certain reordering transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop structures. The
ambiguity arises from the complexity of the keywords, operators, data references, and memory operations
within the loop bodies.

However, by understanding these limitations and by knowing how to interpret diagnostic messages, you
can modify your program to overcome the known limitations and enable effective vectorizations. The
following topics summarize the capabilities and restrictions of the vectorizer with respect to loop
structures.

Data Dependence

Data dependence relations represent the required ordering constraints on the operations in serial loops.
Because vectorization rearranges the order in which operations are executed, any auto-vectorizer must
have at its disposal some form of data dependence analysis. The "Data-dependent Loop" example shows
some code that exhibits data dependence. The value of each element of an array is dependent on itself
and its two neighbors.

Data-dependent Loop
float data[N;
int i;
for (i=1; i<N-1; i++)
{
data[i] = data[i-1]*0.25 + data[i]*0.5 + data[i + 1]*0.25
}

The loop in the example above is not vectorizable because the write to the current elementdat a[i] is
dependent on the use of the preceding element dat a[i - 1] , which has already been written to and
changed in the previous iteration. To see this, look at the access patterns of the array for the first two
iterations as shown in the following example:

102

Data Dependence Vectorization Patterns

i =1: READ data[O
READ dat a[1
READ dat a[2
VWRI TE dat a[1]

i =2: READ data
READ dat a
READ dat a
RI TE dat a

NWN -

In the normal sequential version of the loop shown, the value of dat a[1] read from during the second
iteration was written to in the first iteration. For vectorization, the iterations must be done in parallel,
without changing the semantics of the original loop.

Data Dependence Theory

Data dependence analysis involves finding the conditions under which two memory accesses may
overlap. Given two references in a program, the conditions are defined by:

* whether the referenced variables may be aliases for the same (or overlapping) regions in
memory,

» for array references, the relationship between the subscripts.

For array references, the Intel® C++ Compiler's data dependence analyzer is organized as a series of
tests that progressively increase in power as well as time and space costs. First, a number of simple tests
are performed in a dimension-by-dimension manner, since independence in any dimension will exclude
any dependence relationship. Multi-dimensional arrays references that may cross their declared
dimension boundaries can be converted to their linearized form before the tests are applied. Some of the
simple tests used are the fast GCD test, proving independence if the greatest common divisor of the
coefficients of loop indices cannot evenly divide the constant term, and the extended bounds test, which
tests potential overlap for the extreme values of subscript expressions.

If all simple tests fail to prove independence, the compiler will eventually resort to a powerful hierarchical

dependence solver that uses Fourier-Motzkin elimination to solve the data dependence problem in all
dimensions.

Loop Constructs

Loops can be formed with the usual f or and whi | e- do, orr epeat - unt i | constructs or by using a
got o and a label. However, the loops must have a single entry and a single exit to be vectorized.

103

Correct Usage
while (i < n)

{
/* if branch inside body of |oop */
a[i] =b[i] * c[i];
if (a[i] < 0.0)
{
a[i] = 0.0;
}
| ++;
}

Incorrect Usage
while (i < n)

{
if (condition) break;
/* 2nd exit */
++i ;

}

Loop Exit Conditions

Loop exit conditions determine the number of iterations that a loop executes. For example, fixed indexes
for loops determine the iterations. The loop iterations must be countable; that is, the number of iterations
must be expressed as one of the following:

* aconstant

* aloop invariant term

* alinear function of outermost loop indices

Loops whose exit depends on computation are not countable. Examples below show countable and non-
countable loop constructs.

104

Correct Usage for Countable Loop:

count = N; /* exit condition specified by "N - 1b + 1" */

while (count !'= 1b)

{
/* 1b is not affected within [oop */
a[i] = b[i] * x;
b[i] =c[i] + sqrt(d[i]);
--count;
}

Correct Usage for Countable Loop:
/* exit condition is "(n-m2)/2" */
i =0;

for (I=m I<n; |+=2)

ali]
b[i]

++i ;

b[i] * Xx;
c[i] + sqart(d[i]);

}
Incorrect Usage for Non-Countable Loop:
i = 0;
/* iterations dependent on a[i] */
while (a[i] > 0.0)
{

a[i] =b[i] * c[i];

++i ;

}
Types of Loops Vectorized

For integer loops, MMX(TM) technology and Streaming SIMD Extensions provide SIMD instructions for
most arithmetic and logical operators on 32-bit, 16-bit, and 8-bit integer data types. Vectorization may
proceed if the final precision of integer wrap-around arithmetic will be preserved. A 32-bit shift-right
operator, for instance, is not vectorized if the final stored value is a 16-bit integer. Also, note that because
the MMX(TM) instructions and Streaming SIMD Extensions instruction sets are not fully orthogonal (byte
shifts, for instance, are not supported), not all integer operations can actually be vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point numbers, the
Streaming SIMD Extensions provide SIMD instructions for the arithmetic operators +, -, *, and / . Also,

105

the Streaming SIMD Extensions provide SIMD instructions for the binary M N, MAX, and unary SQRT
operators. SIMD versions of several other mathematical operators (like the trigonometric functions Sl N,
COS, TAN) are supported in software in a vector mathematical run-time library that is provided with the
Intel® C++ Compiler..

Stripmining and Cleanup

The compiler automatically stripmines your loop and generates a cleanup loop. This means you do not
need to unroll your loops, and, in most cases, this will also enable more vectorization.

Before Vectorization
i =0;
while (i < n)
{
/* original |oop code */

a[i] = b[i] + c[i];
++i

}

After Vectorization

/* the vectorizer generates the follow ng two | oops */
i = 0;

while (i < (n - n%l))

{
/* vector strip-mned |oop */
/* subscript [i:i+3] denotes SIMD execution */
afi:i+3] = Db[i:i+3] + c[i:i+3];
=1 + 4;

}

while (i < n)

{
/* scal ar clean-up [oop */
a[i] =b[i] + c[i];

}

106

Statements in the Loop Body

The vectorizable operations are different for floating-point and integer data.

Floating-point Array Operations

The statements within the loop body may contain float operations (typically on arrays). Supported
arithmetic operations include addition, subtraction, multiplication, division, negation, square root, max,
and min. Operation on double precision types is not permitted unless optimizing for a Pentium(R) 4
processor system, using the - xWor - axWcompiler option.

Integer Array Operations

The statements within the loop body may contain char , unsi gned char, short, unsi gned short,
i nt,and unsi gned i nt. Calls to functions such as sqrt and f abs are also supported. Arithmetic
operations are limited to addition, subtraction, bitwise AND, OR, and XOR operators, division (16-bit only),
multiplication (16-bit only), min, and max. You can mix data types only if the conversion can be done
without a loss of precision. Some example operators where you can mix data types are multiplication,

shift, or unary operators.

Other Operations

No statements other than the preceding floating-point and integer operations are allowed. In particular,
note that the special __n64 and __ml 28 datatypes are not vectorizable. The loop body cannot contain
any function calls. Use of the Streaming SIMD Extensions intrinsics (_nmm add_ps) are not allowed.

Language Support and Directives

This topic addresses language features that better help to vectorize code. The decl spec(al i gn(n))
declaration enables you to overcome hardware alignment constraints. The r est ri ct qualifier and the
pragmas address the stylistic issues due to lexical scope, data dependence, and ambiguity resolution.

Language Support

Option

Description

__decl spec(align(n))

Directs the compiler to align the variable to an N-byte boundary. Address
of the variable is addr ess nod n=0.

__decl spec(align(n,off))

Directs the compiler to align the variable to an N-byte boundary with
offset off within each N-byte boundary. Address of the variable is
address nod n =off.

restrict

Permits the disambiguator flexibility in alias assumptions, which enables
more vectorization.

__assune_al i gned(a, n)

Instructs the compiler to assume that array a is aligned on an N-byte
boundary; used in cases where the compiler has failed to obtain
alignment information.

#pragma i vdep

Instructs the compiler to ignore assumed vector dependencies.

#pragma vect or
{aligned | unaligned | always}

Specifies how to vectorize the loop and indicates that efficiency
heuristics should be ignored.

#pragnma novect or

Specifies that the loop should never be vectorized

107

Multi-version Code

Multi-version code is generated by the compiler in cases where data dependence analysis fails to prove
independence for a loop due to the occurrence of pointers with unknown values. This functionality is
referred to as dynamic dependence testing.

Pragma Scope

These pragmas control the vectorization of only the subsequent loop in the program, but the compiler
does not apply them to any nested loops. Each nested loop needs its own pr agna preceding it in order
for the pr agma to be applied. You must place a pr agrma only before the loop control statement.

Name: #pragma vector always

Syntax: #pragna vector always

Definition: This pragma instructs the compiler to override any efficiency heuristic during the decision to
vectorize or not. #pr agma. vect or al ways will vectorize non-unit strides or very unaligned memory
accesses.

Example:
for(i =0; i <= N i++)
{

a[32*i] = b[99*i];
}
Name: #pragma ivdep
Syntax: #pragna ivdep

Definition: This pr agna instructs the compiler to ignore assumed vector dependences. To ensure
correct code, the compiler treats an assumed dependence as a proven dependence, which prevents
vectorization. This pr agnma overrides that decision. Only use this when you know that the assumed loop
dependences are safe to ignore.

The loop in this example will not vectorize with the i vdep pr agns, since the value of k is not known
(vectorization would be illegal if k<0).

Example:

#pragma ivdep

for (i =0; i <m i++)
{

a[i] = a[i + k] * c;
}

108

Name: #pragma vector
Syntax: #pragna vector{aligned | unaligned}

Definition: The vector loop pr agnma means the loop should be vectorized, if it is legal to do so, ignoring
normal heuristic decisions about profitability. When the al i gned (or unal i gned) qualifier is used with
this pr agmma, the loop should be vectorized using al i gned (or unal i gned) operations. Specify one and
only one of al i gned or unal i gned.

&Caution

If you specify al i gned as an argument, you must be absolutely sure that the loop will be vectorizable
using this instruction. Otherwise, the compiler will generate incorrect code.

The loop in the example below uses the al i gned qualifier to request that the loop be vectorized with
aligned instructions, as the arrays are declared in such a way that the compiler could not normally prove
this would be safe to do so.

Example:

void foo (float *a)

{
#pragnma vector aligned
for (i =0, i <m i+4)
{
a[i] = a[i] * c;
}
}

The compiler has at its disposal several alignment strategies in case the alignment of data structures is
not known at compile-time. A simple example is shown below (but several other strategies are supported
as well). If, in the loop shown below, the alignment of a is unknown, the compiler will generate a prelude
loop that iterates until the array reference that occurs the most hits an aligned address. This makes the
alignment properties of a known, and the vector loop is optimized accordingly.

109

Alignment Strategies Example
float *a;
/* alignnent unknown */

for (i = 0; i < 100; i++)

{
a[i] = a[i] + 1.0f;
}
/* dynamic | oop peeling */
p = a & 0xO0f;
if (p!=0)
{

p=1(16 - p) / 4
for (i =0; i < p; i++)
{

a[i] = a[i] + 1.0f;

}
/* loop with a aligned (will be vectorized accordingly) */
for (i = p; i < 100; i++)
{
a[i] = a[i] + 1.0f;

110

Name: #pragma novector

Syntax: #pragma novect or

Definition: The novect or loop pr agne specifies that the loop should never be vectorized, even if it is

legal to do so.

In this example, suppose you know the trip count (ub - | b) is too low to make vectorization worthwhile.

You can use #pr agma novect or to tell the compiler not to vectorize, even if the loop is considered

vectorizable.

Example: #pragma novector

void foo (int Ib, int ub)

{
#pragma novect or
for (j =1b; j < ub; j++)
{
al[j] =a[j] + b[j];
}
}

Dynamic Dependence Testing Example
float *p, *q;
for (i =L, | <=U i++)
{
pli] = alil;

pL = p * 4*L,;

pH = p + 4*U;
gL = g + 4*L;
gH = g + 4*U,
if (pH<aql || pL > aH
{
/* loop w thout data dependence */
for (i =L, i <=U i++)
{
pli] = alil;
} else {

111

for (i =L; i <= U i++)

pli] = 4qli];

Vectorization Examples

This section contains a few simple examples of some common issues in vector programming.

Argument Aliasing: A Vector Copy

The loop in the example below, a vector copy operation, vectorizes because the compiler can prove
dest[i] andsrc[i] are distinct.

Vectorizable Copy Due to Unproven Distinction

voi d vec_copy(float *dest, float *src, int |en)

{
int i;
for (i =0; i <len; i++)
{
dest[i] = src[i];
}
}

The restrict keyword in the example below indicates that the pointers refer to distinct objects. Therefore,
the compiler allows vectorization without generation of multi-version code.

Using restrict to Prove Vectorizable Distinction

voi d vec_copy(float *restrict dest, float *restrict src, int |en)

int i;
for (i =0; i < len; i++)
{
dest[i] = src[i];
}

112

Data Alignment

A 16-byte or greater data structure or array should be aligned so that the beginning of each structure or
array element is aligned in a way that its base address is a multiple of sixteen.

The "Misaligned Data Crossing 16-Byte Boundary" figure shows the effect of a data cache unit (DCU)
split due to misaligned data. The code loads the misaligned data across a 16-byte boundary, which
results in an additional memory access causing a six- to twelve-cycle stall. You can avoid the stalls if you
know that the data is aligned and you specify to assume alignment.

Misaligned Data Crossing 16-Byte Boundary

16 Byte 16 Bwyte
| Boundaries | Boundaries |
CT T]

L
Misaligned Crata

For example, if you know that elements a[0] and b[0] are aligned on a 16-byte boundary, then the
following loop can be vectorized with the alignment option on (#pr agma vect or al i gned):

Alignment of Pointers is Known

float *a, *b;
int i;

for (int i =0; i < 10; i++)
{

a[i] = b[i];
}

After vectorization, the loop is executed as shown here:
Vector and Scalar Clean-up Iterations

2 wector iterations 2 clean-up itergtions
in zcalar mode

- w]
i=0,1,2,3i=4,6,67 j=g 1

Both the vector iterations a[0: 3] =b[0: 3] ;and a[4: 7] =b[4: 7] ; can be implemented with aligned
moves if both the elements a] 0] and b[0] (or, likewise, a[4] and b[4]) are 16-byte aligned.

&Caution

If you specify the vectorizer with incorrect alignment options, the compiler will generate unexpected
behavior. Specifically, using aligned moves on unaligned data, will result in an illegal instruction
exception.

113

Data Alignment Examples

The example below contains a loop that vectorizes but only with unaligned memory instructions. The
compiler can align the local arrays, but because | b is not known at compile-time. The correct alignment
cannot be determined.

Loop Unaligned Due to Unknown Variable Value at Compile Time

void f(int |Db)

{
float z2[N, a2[N, y2[N, x2;
for (i =1b; i <N i++)
{
az[i] = a2[i] * x2 + y2[i];
}
}

If you know that | b is a multiple of 4, you can align the loop with #pr agna vect or al i gned as shown
in the example that follows:

Alignment Due to Assertion of Variable as Multiple of 4
void f(int Ib)

{
float z2[N], a2[N], y2[N, x2;
assert (| b%1==0);
#pragma vector aligned
for (i =1b; i <N i++)
{
az[i] = a2[i] * x2 + y2[i];
}
}

The use of assert checks that | b is a multiple of 4.

114

Loop Interchange and Subscripts: Matrix Multiply

Matrix multiplication is commonly written as shown in the example below:

Typical Matrix Multiplication
for (i =0; i <N i++)

{
for (j =0; j <n; j++)
{
for (k = 0; k < n; k++)
{
c[i][jl =clilli]l + a[i]l[k] * b[KI[j];
}
}
}

The use of b[k] [j],isnotastride-1 reference and therefore will not normally be vectorizable. If the
loops are interchanged, however, all the references will become st ri de- 1 as shown in the "Matrix
Multiplication With Stride-1" example.

ACaution

Interchanging is not always possible because of dependencies, which can lead to different results.

Matrix Multiplication With Stride-1

for (i =0; i <N i++)
{
for (k = 0; k < n; k++)
{
for (j =0; j <n; j++)
{
c[il[ji]l =cl[illjil + a[i][k] * b[KI[j];
}
}

115

Libraries

Libraries Overview

The Intel® C++ Compiler uses the GNU* C Library and Dinkumware* C++ Library. These libraries are
documented at the following Internet locations:

GNU C Library
http://www.gnu.org/manual/glibc-2.2.3/html_chapter/libc_toc.html
Dinkumware C++ Library

http://www.dinkumware.com/htm_cpl/lib_cpp.html

Default Libraries

The compiler allows you to use all the standard run-time libraries. By default, the compiler automatically
expands a number of standard C, C++, and math library functions. For more information, see Inline
Expansion of Library Functions.

The following libraries are supplied.

Library Description

libc.a GNU* C library (included with Red Hat* Linux*)
I i bgui de. a for OpenMP* implementation

libsvm .a short vector math library

libirc.a Intel support library for PGO and CPU dispatch
libinf.a Intel math library

libcprts. a Dinkumware C++ Library

i bunwi nd. a Unwinder library

| i bcxa. a Intel support library for EH and RTTI

If you want to link your program with alternate or additional libraries, specify them at the end of the
command line. For example, to compile and link hello.cpp with mylib.a, use the following command:

* |A-32 Systems: pronpt>icc -ohello hello.cpp nylib.a
e ltanium(TM)-based Systems: pronpt >ecc -ohell o hello.cpp nmylib.a

The nyl i b. a library appears prior to the | i bi nf . a library in the command line for the L1 NK linker.

116

&Caution

The Linux system libraries and the compiler libraries are not built with the - al i gn option. Therefore, if
you compile with the - al i gn option and make a call to a compiler distributed or system library, and have
Il ong | ong, doubl e, orl ong doubl e in your interface, you will get the wrong answer due to the
difference in alignment. Any code built with - al i gn cannot make calls to libraries that use these types in
their interfaces unless they are built with - al i gn (in which case they will not work without - al i gn).

Math Libraries

In the compiler package, you received the Intel math library, | i bi nf . a, which contains optimized
versions of the math functions in the standard C run-time library. The functions in the library are optimized
for program execution speed on the Pentium® processor.

To enable the optimized math library, the installation creates a directory for | i bi nf . a and adds the new

directory path to the LD_LI| BRARY_PATH variable. Intel recommends you keep | i bi nf . a in the first
directory specified in the path.

Intel® Shared Libraries

The Intel® C++ Compiler (both 1A-32 and Itanium(TM) compilers) links the libraries statically at link time
and dynamically at run time, the latter as dynamically-shared objects (DSO).

By default, the libraries are linked as follows:
* C++,math,and | i bcprts. a libraries are linked at link time, that is, statically.
* |ibcxa. sois linked dynamically to conform to C++ ABI.

* GNU* and Linux* system libraries are linked dynamically.

Advantages of This Approach
This approach
* Enables to maintain the same model for both 1A-32 and Itanium compilers.

* Provides a model consistent with the Linux model where system libraries are dynamic and
application libraries are static.

* The users have the option of using dynamic versions of our libraries to reduce the size of their
binaries if desired.

* The users are licensed to distribute Intel-provided libraries.

The libraries | i bcprts. a and | i bcxa. so are C++ language support libraries used by Fortran when
Fortran includes code written in C++.

117

Shared Library Options
The main options used with shared libraries are - i _dynani ¢ and - shar ed.

The -i _dynami ¢ option can be used to specify that all Intel-provided libraries should be linked
dynamically. The comparison of the following commands illustrates the effects of this option.

1. pronpt >i cc nyprog. cpp

This command produces the following results (default):
e C++,math,libirc.a,and|libcprts. a libraries are linked statically (at link time).
* Dynamic version of | i bcxa. so is linked at run time.

The statically linked libraries increase the size of the application binary, but do not need to be installed on
the systems where the application runs.

2.pronpt>icc -i_dynam c nyprog.cpp

This command links all of the above libraries dynamically. This has the advantage of reducing the size of
the application binary, but it requires all the dynamic versions installed on the systems where the
application runs.

The - shar ed option instructs the compiler to build a Dynamic Shared Object (DSO) instead of an
executable. For more details, refer to the | d man page documentation.

Managing Libraries

The LD_LI BRARY_PATH environment variable contains a semicolon-separated list of directories in which
the linker will search for library (. a) files. If you want the linker to search additional libraries, you can add
their names to the command line, to a response file, or to the configuration file. In each case, the names
of these libraries are passed to the linker before the names of the Intel libraries that the driver always
specifies. For more information on adding library names to the response file and the configuration file, see
Response Files and Configuration Files.

To specify a library name on the command line, you must first add the library's path to the LI B
environment variable. Then, to compile fi | e. cpp and link it with the library nmyl i b. a, enter the following
command:

* 1A-32 Systems: pronpt>icc file.cpp nylib.a

* |tanium(TM)-based Systems: pronpt>ecc file.cpp nmylib.a
The compiler passes file names to the linker in the following order:

1. the object file

2. any objects or libraries specified on the command line, in a response file, or in a configuration file

3. thelibinf.alibrary

118

Diagnostics and Messages

Diagnostic Overview

This section describes the various messages that the compiler produces. These messages include the
sign-on message and diagnostic messages for remarks, warnings, or errors. The compiler always
displays any diagnostic message, along with the erroneous source line, on the standard output.

This section also describes how to control the severity of diagnostic messages.

Language Diagnostics

These messages describe diagnostics that are reported during the processing of the source file. These
diagnostics have the following format:

filenane (linenum: type [#nn]: nessage

filenane Indicates the name of the source file currently being processed.

| i nenum Indicates the source line where the compiler detects the condition.

type Indicates the severity of the diagnostic message: warning, remark, error, or catastrophic error.

[#nn] The number assigned to the error (or warning) message. Hard errors or catastrophes are not assigned a
number.

message Describes the diagnostic.

The following is an example of a warning message:
tantst.cpp(3): warning #328: Local variable "increnment" never used.

The compiler can also display internal error messages on the standard error. If your compilation produces
any internal errors, contact your Intel representative. Internal error messages are in the following form:

FATAL COWPI LER ERROR: message

Suppressing Warning Messages with lint Comments

The UNIX | i nt program attempts to detect features of a C or C++ program that are likely to be bugs,
non-portable, or wasteful. The compiler recognizes three | i nt -specific comments:

1. /* ARGSUSED*/
2. |/ * NOTREACHED*/
3. [/ *VARARGS*/

Like the I i nt program, the compiler suppresses warnings about certain conditions when you place these
comments at specific points in the source.

119

Suppressing Warning Messages or Enabling Remarks

Use the - wor - Wh option to suppress warning messages or to enable remarks during the preprocessing
and compilation phases. You can enter the option with one of the following arguments:

Option Description

-wWO0, -w Displays error messages only. Both - WO and - Wdisplay exactly the same messages.

-wl, - w2 Displays warnings and error messages. Both - W1 and - W2 display exactly the same messages.The compiler
uses this level as the default.

For some compilations, you might not want warnings for known and benign characteristics, such as the
K&R C constructs in your code. For example, the following command compiles newpr og. cpp and
displays compiler errors, but not warnings:

* 1A-32 System: pronpt >i cc - W) newpr og. cpp

e ltanium(TM)-based System: pr onpt >ecc - W) newpr og. cpp

Limiting the Number of Errors Reported

Use the - wnn option to limit the number of error messages displayed before the compiler aborts. By
default, if more than 100 errors are displayed, compilation aborts.

Option Description

-wnn Limit the number of error diagnostics that will be displayed prior to aborting compilation to N . Remarks and
warnings do not count towards this limit.

For example, the following command line specifies that if more than 50 error messages are displayed
during the compilation of a. cpp, compilation aborts.

* |A-32 Systems: pronpt>icc -wn50 -c a.cpp

* ltanium(TM)-based Systems: pronpt >ecc -wn50 -c a.cpp

Remark Messages

These messages report common, but sometimes unconventional, use of C or C++. The compiler does not
print or display remarks unless you specify level 4 for the - Woption, as described in Suppressing Warning
Messages or Enabling Remarks. Remarks do not stop translation or linking. Remarks do not interfere with
any output files. The following are some representative remark messages:

e function declared inplicitly
e type qualifiers are nmeaningless in this declaration

e controlling expression is constant

120

Reference Information

Compiler Limits

Compiler Limits

The Compiler Limits table below shows the size or number of each item that the compiler can process. All

capacities shown in the table are tested values; the actual number can be greater than the number

shown.

Item Tested Values
Control structure nesting (block nesting) 512
Conditional compilation nesting 512
Declarator modifiers 512
Parenthesis nesting levels 512
Significant characters, internal identifier 2048
External identifier name length 64K
Number of external identifiers/file 128K
Number of identifiers in a single block 2048
Number of macros simultaneously defined 128K
Number of parameters to a function call 512
Number of parameters per macro 512
Number of characters in a string 128K
Bytes in an object 512K
Include file nesting depth 512
Case labels in a switch 32K
Members in one structure or union 32K
Enumeration constants in one enumeration 8192
Levels of structure nesting 320

121

Intel C++ Key Files

Key Files Summary for IA-32 Compiler

The following tables list and briefly describe files that are installed for use by the 1A-32 version of the

compiler.

/bin Files

File Description

i ccvars. sh Batch file to set environment variables
icc.cfg Configuration file for use from command line
icc Intel® C++ Compiler

pr of mer ge Utility used for Profile Guided Optimizations

pr of or der Utility used for Profile Guided Optimizations
xild Tool used for Interprocedural Optimizations
/lib Files

File Description

[ibcprts.a C++ standard language library

| i bcxa. so C++ language library indicating 1/0 data location
[i bgui de. a OpenMP library

I i bgui de. so Shared OpenMP library

libinf.a Special purpose math library functions, including some transcendentals, built only for Linux*.
libintrins.a Intrinsic functions library

libirc.a Intel-specific library (optimizations)

i bunwi nd. a Unwinder library

[ibsvm .a Short-vector math library (used by vectorizer)

122

Key Files Summary for Itanium(TM) Compiler

The following tables list and briefly describe files that are installed for use by the Itanium(TM) compiler
version of the compiler.

/bin Files

File

Description

eccvars. sh

Batch file to set environment variables

ecc.cfg Configuration file for use from command line

ecc Intel® C++ Compiler

i as Assembler

pr of mer ge Utility used for Profile Guided Optimizations

pr of or der Utility used for Profile Guided Optimizations

xild Tool used for Interprocedural Optimizations

/lib Files

File Description

libcprts.a C++ standard language library

| i bcxa. so C++ language library indicating 1/0 data location
libirc.a Intel-specific library (optimizations)

libma Math library

[i bgui de. a OpenMP library

I i bgui de. so Shared OpenMP library

i bnofl . a Multiple Object Format Library, used by the Intel assembler
i brofl . so Shared Multiple Object Format Library, used by the Intel assembler

| i bunwi nder. a

Unwinder library

libintrins. a

Intrinsic functions library

123

Intel C++ Intrinsics Reference

Overview of the Intrinsics

Types of Intrinsics

The Intel® Pentium® 4 processor and other Intel processors have instructions to enable development of
optimized multimedia applications. The instructions are implemented through extensions to previously
implemented instructions. This technology uses the single instruction, multiple data (SIMD) technique. By
processing data elements in parallel, applications with media-rich bit streams are able to significantly
improve performance using SIMD instructions. The Intel® Itanium(TM) processor also supports these
instructions.

The most direct way to use these instructions is to inline the assembly language instructions into your
source code. However, this can be time-consuming and tedious, and assembly language inline
programming is not supported on all compilers. Instead, Intel provides easy implementation through the
use of API extension sets referred to as intrinsics.

Intrinsics are special coding extensions that allow using the syntax of C function calls and C variables
instead of hardware registers. Using these intrinsics frees programmers from having to program in
assembly language and manage registers. In addition, the compiler optimizes the instruction scheduling
so that executables run faster.

In addition, the native intrinsics for the Itanium processor give programmers access to Itanium instructions
that cannot be generated using the standard constructs of the C and C++ lanugages. The Intel® C++
Compiler also supports general purpose intrinsics that work across all 1A-32 and Itanium-based platforms.
For more information on intrinsics, please refer to the following publications:

Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference Manual, Intel
Corporation, doc. number 243191.

Itanium(TM)-based Application Developer's Architecture Guide, Intel Corporation

Intrinsics Availability on Intel Processors

Processors [MMX(TM) Technology |[Streaming SIMD |[Streaming SIMD [ltanium™ Processor
Intrinsics Extensions Extensions 2 Instructions

ItaniumO X X N/A X

Processor

PentiumO 4 X X X N/A

Processor

Pentium Ill X X N/A N/A

Processor

Pentium I X N/A N/A N/A

Processor

Pentium with X N/A N/A N/A

MMX(TM)

Technology

124

Processors |MMX(TM) Technology |Streaming SIMD |Streaming SIMD |ltanium™ Processor
Intrinsics Extensions Extensions 2 Instructions

Pentium Pro N/A N/A N/A N/A

Processor

Pentium N/A N/A N/A N/A

Processor

Benefits of Using Intrinsics

The major benefit of using intrinsics is that you now have access to key features that are not available
using conventional coding practices. Intrinsics enable you to code with the syntax of C function calls and
variables instead of assembly language. Most MMX(TM) technology, Streaming SIMD Extensions, and
Streaming SIMD Extensions 2 intrinsics have a corresponding C intrinsic that implements that instruction
directly. This frees you from managing registers and enables the compiler to optimize the instruction
scheduling.

The MMX technology and Streaming SIMD Extension instructions use the following new features:
* New Registers--Enable packed data of up to 128 bits in length for optimal SIMD processing.
* New Data Types--Enable packing of up to 16 elements of data in one register.

The Streaming SIMD Extensions 2 intrinsics are defined only for I1A-32, not for Itanium(TM)-based
systems. Streaming SIMD Extensions 2 operate on 128 bit quantities—2 64-bit double precision floating
point values. The Itanium architecture does not support parallel double precision computation, so
Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

New Registers

A key feature provided by the architecture of the processors are new register sets. The MMX instructions
use eight 64-bit registers (n0 to n7) which are aliased on the floating-point stack registers.

MMX(TM) Technology Registers

Tag Word MME™MTechnelogy Registers
1 0] 1]
il oy
Il
OMOEss2

125

Streaming SIMD Extensions Registers

The Streaming SIMD Extensions use eight 128-bit registers (x D to xrm).

Streaming SIM D Extension Registers
12 0

Hhahacr

i 7

CIMOES 53

These new data registers enable the processing of data elements in parallel. Because each register can
hold more than one data element, the processor can process more than one data element
simultaneously. This processing capability is also known as single-instruction multiple data processing
(SIMD).

For each computational and data manipulation instruction in the new extension sets, there is a
corresponding C intrinsic that implements that instruction directly. This frees you from managing registers
and assembly programming. Further, the compiler optimizes the instruction scheduling so that your
executable runs faster.

f)Note

The MMand XMMregisters are the SIMD registers used by the 1A-32 platforms to implement MMX
technology and Streaming SIMD Extensions/Streaming SIMD Extensions 2 intrinsics. On the Itanium-
based platforms, the MMX and Streaming SIMD Extension intrinsics use the 64-bit general registers and
the 64-bit significand of the 80-bit floating-point register.

New Data Types

Intrinsic functions use four new C data types as operands, representing the new registers that are used
as the operands to these intrinsic functions. The table below shows the new data type availability marked
with "X".

New Data Types Available

New Data Type |[MMX(TM) Streaming SIMD Streaming SIMD Itanium(TM)
Technology Extensions Extensions 2 Processor

__nb4 X X X X

__ml28 N/A X X X

__nml28d N/A N/A X X

_ mL28i N/A N/A X X

126

__m64 Data Type

The __ nB4 data type is used to represent the contents of an MMX register, which is the register
that is used by the MMX technology intrinsics. The __ n64 data type can hold eight 8-bit values,
four 16-bit values, two 32-bit values, or one 64-bit value.

__m128 Data Types

The __ 28 data type is used to represent the contents of a Streaming SIMD Extension register
used by the Streaming SIMD Extension intrinsics. The __nil28 data type can hold four 32-bit
floating values.

The __n128d data type can hold two 64-bit floating-point values.
The _ nl28i data type can hold sixteen 8-bit, eight 16-bit, four 32-bit, or two 64-bit integer values.

The compiler aligns ___ml 28 local and global data to 16-byte boundaries on the stack. To align
i nt eger, fl oat, ordoubl e arrays, you can use the declspec statement.

New Data Types Usage Guidelines

Since these new data types are not basic ANSI C data types, you must observe the following usage
restrictions:

* Use new data types only on either side of an assignment, as a return value, or as a parameter.
You cannot use it with other arithmetic expressions ("+", "-", and so on).

* Use new data types as objects in aggregates, such as unions to access the byte elements and
structures.

* Use new data types only with the respective intrinsics described in this documentation. The new

data types are supported on both sides of an assignment statement: as parameters to a function
call, and as a return value from a function call.

127

Naming and Usage Syntax

Most of the intrinsic names use a notational convention as follows:

_mm<intrin_op>_<suffix>

<intrin_op> Indicates the intrinsics basic operation; for example, add for addition and Sub for subtraction.

<suffix> Denotes the type of data operated on by the instruction. The first one or two letters of each suffix denotes
whether the data is packed (P), extended packed (€P), or scalar (S). The remaining letters denote the
type:

. S single-precision floating point
* d double-precision floating point
e i 128 signed 128-bit integer

* | 64 signed 64-bit integer

e U64 unsigned 64-bit integer

e i 32 signed 32-hit integer

e U32 unsigned 32-bit integer

* i 16 signed 16-hit integer

e Ul6 unsigned 16-bit integer

* | 8 signed 8-bit integer

e U8 unsigned 8-bit integer

A number appended to a variable nhame indicates the element of a packed object. For example, r O is the
lowest word of r . Some intrinsics are "composites" because they require more than one instruction to
implement them.

The packed values are represented in right-to-left order, with the lowest value being used for scalar
operations. Consider the following example operation:

double a[2] = {1.0, 2.0};
_ ml28d t = nmmload pd(a);
The result is the same as either of the following:

_ nl28d t

_mmset _pd(2.0, 1.0);

_ ml28d t _mmsetr_pd(1.0, 2.0);

In other words, the xnmregister that holds the value t will look as follows:

The "scalar" elementis 1. 0. Due to the nature of the instruction, some intrinsics require their arguments
to be immediates (constant integer literals).

128

Intrinsic Syntax

To use an intrinsic in your code, insert a line with the following syntax:

data_type intrinsic_nane (paraneters)

Where,

data_type Is the return data type, which can be either voi d,i nt, __n64, nll28, nil28d,
__ml28i, i nt 64. Intrinsics that can be implemented across all IA may return other data types
as well, as indicated in the intrinsic syntax definitions.

i ntrinsic_name Is the name of the intrinsic, which behaves like a function that you can use in your C++ code instead
of inlining the actual instruction.

paraneters Represents the parameters required by each intrinsic.

Intrinsics Implementation Across All IA

Intrinsics For Implementation for All 1A

The intrinsics in this section function across all IA-32 and Itanium(TM)-based platforms. They are offered
as a convenience to the programmer. They are grouped as follows:

* Integer Arithmetic Related
* Floating-Point Related
* String and Block Copy Related

¢ Miscellaneous

Integer Arithmetic Related

E)Note

Passing a constant shift value in the rotate intrinsics results in higher performance.

Intrinsic Description

i nt abs(int) Returns the absolute value of an
integer.

[ong | abs(! ong) Returns the absolute value of a long
integer.

unsigned long _Irotl(unsigned |ong value, int shift) |Rotates bits left for an unsigned long
integer.

unsigned long _lrotr(unsigned |ong value, int shift) |Rotates bits right for an unsigned long

integer.
unsigned int _ rotl(unsigned int value, int shift) Rotates bits left for an unsigned integer.
unsigned int _ rotr(unsigned int value, int shift) Rotates bits right for an unsigned
integer.

129

Floating-point Related

Intrinsic

Description

doubl e fabs(doubl e)

Returns the absolute value of a floating-point value.

doubl e | og(doubl e)

Returns the natural logarithm In(x), x>0, with double precision.

float |ogf(float)

Returns the natural logarithm In(x), x>0, with single precision.

doubl e | 0g10(doubl e)

Returns the base 10 logarithm log10(x), x>0, with double
precision.

float | oglOf(float)

Returns the base 10 logarithm log10(x), x>0, with single
precision.

doubl e exp(doubl e)

Returns the exponential function with double precision.

float expf(float)

Returns the exponential function with single precision.

doubl e pow(doubl e, doubl e)

Returns the value of x to the power y with double precision.

float powf (float, float)

Returns the value of x to the power y with single precision.

doubl e sin(doubl e)

Returns the sine of x with double precision.

float sinf(float)

Returns the sine of x with single precision.

doubl e cos(doubl e)

Returns the cosine of x with double precision.

float cosf(fl oat)

Returns the cosine of x with single precision.

doubl e tan(doubl e)

Returns the tangent of x with double precision.

float tanf(fl oat)

Returns the tangent of x with single precision.

doubl e acos(doubl e)

Returns the arccosine of x with double precision

fl oat acosf(float)

Returns the arccosine of x with single precision

doubl e acosh(doubl e)

Compute the inverse hyperbolic cosine of the argument with
double precision.

fl oat acoshf(fl oat)

Compute the inverse hyperbolic cosine of the argument with
single precision.

doubl e asi n(doubl e)

Compute arc sine of the argument with double precision.

float asinf(float)

Compute arc sine of the argument with single precision.

doubl e asi nh(doubl e)

Compute inverse hyperbolic sine of the argument with double
precision.

fl oat asinhf(fl oat)

Compute inverse hyperbolic sine of the argument with single
precision.

doubl e atan(doubl e)

Compute arc tangent of the argument with double precision.

float atanf(float)

Compute arc tangent of the argument with single precision.

doubl e atanh(doubl e)

Compute inverse hyperbolic tangent of the argument with double
precision.

130

Intrinsic

Description

float atanhf(float)

Compute inverse hyperbolic tangent of the argument with single
precision.

fl oat cabs(doubl e)**

Computes absolute value of complex number.

doubl e ceil (doubl e)

Computes smallest integral value of double precision argument
not less than the argument.

float ceilf(float)

Computes smallest integral value of single precision argument
not less than the argument.

doubl e cosh(doubl e)

Computes the hyperbolic cosine of double precison argument.

float coshf(float)

Computes the hyperbolic cosine of single precison argument.

float fabsf(float)

Computes absolute value of single precision argument.

doubl e fl oor (doubl e)

Computes the largest integral value of the double precision
argument not greater than the argument.

float floorf(float)

Computes the largest integral value of the single precision
argument not greater than the argument.

doubl e frod(doubl e)

Computes the floating-point remainder of the division of the first
argument by the second argument with double precison.

float frnodf(float)

Computes the floating-point remainder of the division of the first
argument by the second argument with single precison.

doubl e hypot (doubl e,

doubl e)

Computes the length of the hypotenuse of a right angled triangle
with double precision.

fl oat hypotf(fl oat)

Computes the length of the hypotenuse of a right angled triangle
with single precision.

doubl e rint(doubl e)

Computes the integral value represented as double using the
IEEE rounding mode.

float rintf(float)

Computes the integral value represented with single precision
using the IEEE rounding mode.

doubl e sinh(doubl e)

Computes the hyperbolic sine of the double precision argument.

float sinhf(float)

Computes the hyperbolic sine of the single precision argument.

float sqrtf(float)

Computes the square root of the single precision argument.

doubl e tanh(doubl e)

Computes the hyperbolic tangent of the double precision
argument.

float tanhf(float)

Computes the hyperbolic tangent of the single precision
argument.

* Not implemented on Itanium-based systems.

** doubl e in this case is a complex number made up of two single precision (32-bit floating point)
elements (real and imaginary parts).

131

String and Block Copy Related

ENote

The following are not implemented as intrinsics on Itanium(TM)-based platforms.

Intrinsic Description

char *_strset(char *, _int32) Sets all characters in a string to a
fixed value.

voi d *nmencnp(const void *cs, const void *ct, size_t n) |Comparestwo regions of memory.
Return <0 if cS<Ct ,0ifCS=Ct , or
>0ifcsS>Ct .

voi d *nmencpy(void *s, const void *ct, size_t n) Copies from memory. Returns S.

void *menset (void * s, int c, size_t n) Sets memory to a fixed value.

Returns S.

char *strcat(char * s, const char * ct)

Appends to a string. Returns S.

int *strcnp(const char *, const char *)

Compares two strings. Return <0 if
cs<ct,oifcs=ct, or >0 if
cs>ct.

char *strcpy(char * s, const char * ct)

Copies a string. Returns S.

size_t strlen(const char * cs)

Returns the length of string CS.

int strncnp(char *, char *, int) Compare two strings, but only
specified number of characters.
int strncpy(char *, char *, int) Copies a string, but only specified

number of characters.

Miscellaneous Intrinsics

ﬁNote

Except for _enabl e() and _di sabl e() ,these functions have not been implemented for Itanium(TM)

instructions.

Intrinsic

Description

void *_alloca(int)

Allocates the buffers.

int _setjnp(jnp_buf)*

A fast version of Set j () , which bypasses the termination
handling. Saves the callee-save registers, stack pointer and
return address.

_exception_code(void)

Returns the exception code.

_exception_info(void)

Returns the exception information.

_abnornmal _term nation(void)

Can be invoked only by termination handlers. Returns TRUE if
the termination handler is invoked as a result of a premature exit
of the corresponding try-finally region.

132

voi d _enabl e()

Enables the interrupt.

voi d _di sabl e()

Disables the interrupt.

int _bswap(int)

Intrinsic that maps to the I1A-32 instruction BSWAP (swap bytes).
Convert little/big endian 32-bit argument to big/little endian form

int _in_byte(int)

Intrinsic that maps to the 1A-32 instruction | N. Transfer data byte
from port specified by argument.

int _in_dword(int)

Intrinsic that maps to the 1A-32 instruction | N. Transfer double
word from port specified by argument.

int _in_word(int)

Intrinsic that maps to the 1A-32 instruction | N. Transfer word
from port specified by argument.

int _inp(int)

Sameas i n_bhyte

int _inpd(int)

Same as _i n_dwor d

int _inpw(int)

Sameas _i n_word

int out _byte(int, int)

Intrinsic that maps to the 1A-32 instruction OUT. Transfer data
byte in second argument to port specified by first argument.

int _out _dword(int, int)

Intrinsic that maps to the 1A-32 instruction OUT. Transfer double
word in second argument to port specified by first argument.

int _out word(int, int)

Intrinsic that maps to the 1A-32 instruction OUT. Transfer word in
second argument to port specified by first argument.

int _outp(int, int)

Sameas _out _byte

int _outpd(int, int)

Same as _out dword

int _outpw(int, int)

Same as _out _wor d

* Implemented as a library function call.

133

MMX(TM) Technology Intrinsics

Support for MMX(TM) Technology

MMX(TM) technology is an extension to the Intel architecture (lA) instruction set. The MMX instruction set
adds 57 opcodes and a 64-bit quadword data type, and eight 64-bit registers. Each of the eight registers
can be directly addressed using the register names nm0 to .

The prototypes for MMX technology intrinsics are in the mm nt ri n. h header file.

The EMMS Instruction: Why You Need It

Using EMVES is like emptying a container to accommodate new content. For instance, MMX(TM)
instructions automatically enable an FP tag word in the register to enable use of the __n64 data type.
This resets the FP register set to alias it as the MMX register set. To enable the FP register set again,
reset the register state with the EMVS instruction or via the _mm enpt y() intrinsic.

Why You Need EMMS to Reset After an MMX(TM) Instruction

MK Instuclion Regiskeds Mesd esg [aka by pes

; FE Tag . . e fsgislers

a4 [ata Types

FF Irstrucion Regisless Meed kb be Fesed (o Acceg
FP Drala bypres of 32 &4 and 80 Liks

FP T ag FE Plagisis
1 70 I .I-.-.-..} lerss o
[oul]
Py
______ sty) Clsars Fie FP T s Wioed and Afows FP Daka Ty pes in Fegishs < Again

CREIEETT

&Caution

Failure to empty the multimedia state after using an MMX instruction and before using a floating-point
instruction can result in unexpected execution or poor performance.

134

EMMS Usage Guidelines

The guidelines when to use EMVS are:

* Do not use on Itanium(TM)-based systems. There are no special registers (or overlay) for the
MMX(TM) instructions or Streaming SIMD Extensions on Itanium-based systems even though the
intrinsics are supported.

e Use mmenpty() after an MMX instruction if the next instruction is a floating-point (FP)
instruction—for example, before calculations on f | oat , doubl e or | ong doubl e. You must be
aware of all situations when your code generates an MMX instruction with the Intel® C++
Compiler, i.e.:

* when using an MMX technology intrinsic

* when using Streaming SIMD Extension integer intrinsics that use the __n64 data type
* when referencing an __n64 data type variable

* when using an MMX instruction through inline assembly

e Donotuse _mm enpty() before an MMX instruction, since using _nm enpt y() before an
MMX instruction incurs an operation with no benefit (no-op).

* Use different functions for operations that use FP instructions and those that use MMX
instructions. This eliminates the need to empty the multimedia state within the body of a critical
loop.

e Use_mm enpty() during runtime initialization of __n64 and FP data types. This ensures
resetting the register between data type transitions.

* See the "Correct Usage" coding example below.

Incorrect Usage Correct Usage
B4 x = _mpaddd(y, z); B4 x = _m paddd(y, z);
float f = init(); float f = (_mmenpty(), init());

For more documentation on EMVE, visit the http://developer.intel.com Web site.

135

MMX™ Technology General Support Intrinsics

The prototypes for MMX technology intrinsics are in the mm nt ri n. h header file.

_pi 32

Intrinsic Alternate Corresponding [Operation Sighed Saturation

Name Name Instruction

_menpty _mm enpty EMVB Empty MMistate - -

~mfromint | _nmmecvtsi32_ [MOVD Convertfromi nt |- -
si 64

_mto_int _mm cvt si 64_ [MOVD Convertfromi nt |- -
si 32

_m packsswb | _mm packs_pi [PACKSSV\B Pack Yes Yes
16

_m packssdw |_mm packs_pi [PACKSSDW Pack Yes Yes
32

_m packuswb | _mm packs_pu [PACKUSV\B Pack No Yes
16

~m punpckhbw | mm unpackhi |PUNPCKHBW Interleave - -
 pi 8

~m punpckhwd | mm unpackhi |PUNPCKHW\D Interleave - -
_pi 16

~m punpckhdq | mm unpackhi |PUNPCKHDQ Interleave - -
_pi 32

~m punpckl bw| mm unpackl o |PUNPCKLBW Interleave - -
| pi 8

_m punpckl wd | mm unpackl o |PUNPCKLWD Interleave - -
_pi 16

_m punpckl dg | mm unpackl o |PUNPCKLDQ Interleave - -

voi d

_m enpty(void)

Empty the multimedia state.

See The EMMS Instruction:

_ 64 mfromint(int i)

Convert the integer objecti to a 64-bit ___nb4 object. The integer value is zero-extended to 64 bits.

i nt _mto_i

nt(__nb4 m

Why You Need It figure for details.

Convert the lower 32 bits of the __n64 object mto an integer.

136

__mB64 _m packsswb(__nm64 nil, _ b4 nR)

Pack the four 16-bit values from mi into the lower four 8-bit values of the result with signed
saturation, and pack the four 16-bit values from n? into the upper four 8-bit values of the result with
signed saturation.

__nmb4 m packssdw(__nmb64 nil, _ nb64 nR)

Pack the two 32-bit values from i into the lower two 16-bit values of the result with signed
saturation, and pack the two 32-bit values from n? into the upper two 16-bit values of the result
with signed saturation.

__mB4 _m packuswb(__nm64 ml, _ nb4 nR)

Pack the four 16-bit values from i into the lower four 8-bit values of the result with unsigned
saturation, and pack the four 16-bit values from n? into the upper four 8-bit values of the result with
unsigned saturation.

__nB64 _m punpckhbw(__n64 nl, _ nb4 nR)

Interleave the four 8-bit values from the high half of niL with the four values from the high half of n2.
The interleaving begins with the data from mi.

__n64 _m punpckhwd(__n64 nl, _ nb4 nR)

Interleave the two 16-bit values from the high half of ni. with the two values from the high half of
n2. The interleaving begins with the data from mi.

__nB64 _m punpckhdq(__n64 nl, _ nb4 nR)

Interleave the 32-bit value from the high half of mL with the 32-bit value from the high half of n2.
The interleaving begins with the data from ni.

__mB64 _m punpckl bw(__nb4 ml, _ nb4 nR)

Interleave the four 8-bit values from the low half of mlL with the four values from the low half of n.
The interleaving begins with the data from ni.

__m64 _m punpcklwd(__nB4 nil, _ nb64 nR)

Interleave the two 16-bit values from the low half of mil with the two values from the low half of n2.
The interleaving begins with the data from nil.

__mB64 _m punpckldg(__nb4 ml, _ nb4d nR)

Interleave the 32-bit value from the low half of mlL with the 32-bit value from the low half of n2. The
interleaving begins with the data from mi.

137

MMX(TM) Technology Packed Arithmetic Intrinsics

The prototypes for MMX technology intrinsics are in the mm nt ri n. h header file.

Intrinsic Alternate Corresponding |Operation |Signed Argument Result

Name Name Instruction Values/Bits [Values/Bits

_m paddb _mm_add_pi |PADDB Addition 8/8 8/8
8

_m paddw [mm add_pi |PADDW Addition 4/16 4/16
16

_m paddd _mm_add_pi |PADDD Addition 2/32 2/32
32

_m paddsb | mm adds_p |PADDSB Addition Yes 8/8 8/8
i 8

_m paddsw | _nm adds_p [PADDSW Addition Yes 4/16 4/16
i 16

_m paddusb |_nm adds_p |PADDUSB Addition No 8/8 8/8
u8

_m paddusw |_nm adds_p [PADDUSW Addition No 4/16 4/16
ulé

_m _psubb _mm sub_pi |PSUBB Subtraction 8/8 8/8
8

_m psubw [mm sub_pi |PSUBW Subtraction 4/16 4/16
16

_m psubd _mm sub_pi [PSUBD Subtraction 2/32 2/32
32

~m psubsb | mm subs_p |PSUBSB Subtraction Yes 8/8 8/8
i 8

_m psubsw [_mm subs_p [PSUBSW Subtraction Yes 4/16 4/16
i 16

_m psubusb | mm subs_p |PSUBUSB Subtraction No 8/8 8/8
u8

_m psubusw | mm subs_p |PSUBUSW Subtraction No 4/16 4/16
ulé

_m pmaddwd [mm madd_p |PMADDWD Multiplication 4/16 2/32
i 16

_m prmul hw | mm nul hi _ |PMJLHW Multiplication |Yes 4/16 4/16 (high)
pi 16

mpnullw [mmnullo [PMULLW Multiplication 4/16 4/16 (low)
pi 16

138

__nB4 _mpaddb(__nb4 nml, _ nb4 np)

Add the eight 8-bit values in ni to the eight 8-bit values in n.
__mb64 mpaddw(__nmb4 nl, _ nb4 nR)

Add the four 16-bit values in i to the four 16-bit values in n2.
__nmb4 _mpaddd(__nb4 ml, _ nmb4 nR)

Add the two 32-bit values in ml to the two 32-bit values in n2.
__nmB64 m paddsb(__nb4 ml, _ nb4 nR)

Add the eight signed 8-bit values in nil to the eight signed 8-bit values in n2 using saturating
arithmetic.

__nmb4 mpaddsw(__nb4 ml, _ nb4 nR)

Add the four signed 16-bit values in ml to the four signed 16-bit values in n2 using saturating
arithmetic.

__nmb64 _m paddusb(__n64 nl, _ nb4 nR)

Add the eight unsigned 8-bit values in nil to the eight unsigned 8-bit values in n2 and using
saturating arithmetic.

__n64 _m paddusw(__n64 nil, _ nb4 nR)

Add the four unsigned 16-bit values in ml to the four unsigned 16-bit values in n2 using saturating
arithmetic.

__n64 _mpsubb(__nb4 nl, _ nb4 nR)

Subtract the eight 8-bit values in n2 from the eight 8-bit values in mi.
__n64 _mpsubw(__nb4 nl, _ nb4 nR)

Subtract the four 16-bit values in n2 from the four 16-bit values in .
__m64 _mpsubd(__nb64 nml, _ nb4 nR)

Subtract the two 32-bit values in n2 from the two 32-bit values in ni.
__m64 _m psubsb(__nmb4 nl, _ nb4 nR)

Subtract the eight signed 8-bit values in n2 from the eight signed 8-bit values in il using saturating
arithmetic.

__ nB4 mpsubsw__nb4 ml, _ nb4d nR)

Subtract the four signed 16-bit values in n2 from the four signed 16-bit values in nl using
saturating arithmetic.

__nB4 _m psubusb(__n64 nil, _ nmb64 nR)

Subtract the eight unsigned 8-bit values in n2 from the eight unsigned 8-bit values in mlL using
saturating arithmetic.

139

__mB64 _m psubusw(__nb4 nl, _ nb4 nR)

Subtract the four unsigned 16-bit values in n2 from the four unsigned 16-bit values in mlL using
saturating arithmetic.

__n64 _m pmaddwd(__nB4 nl, _ B4 nR)

Multiply four 16-bit values in niL by four 16-bit values in n2 producing four 32-bit intermediate
results, which are then summed by pairs to produce two 32-bit results.

_m64 mpmulhw(__ nBb4 ml, _ nb4 nR)

Multiply four signed 16-bit values in nil by four signed 16-bit values in n2 and produce the high 16
bits of the four results.

_m4 mpmullw__nb4 ml, _ nb4 nR)

Multiply four 16-bit values in niL by four 16-bit values in n2 and produce the low 16 bits of the four
results.

MMX(TM) Technology Shift Intrinsics

The prototypes for MMX technology intrinsics are in the mm nt ri n. h header file.

Intrinsic Alternate Shift Shift Corresponding
Name Name Direction Type Instruction
_mpsllw ~mmsl| _pil6 left Logical PSLLW

- m pslw mmslli_pil6 |left Logical PSLLW
_mpsllid _mm sl | _pi32 left Logical PSLLD

m psl I di mmslli_pi32 |left Logical PSLLDI
_mpsllqg mm sl _si64 left Logical PSLLQ

m psllqi mmslli_si64 |left Logical PSLLQ

_m psraw _mm sra_pil6 right Arithmetic PSRAW
_m _psr awi _mm srai _pil6 [right Arithmetic PSRAW

_m psrad _mm sra_pi 32 right Arithmetic PSRAD

~m psr adi _mm srai _pi 32 |[right Arithmetic PSRADI
mpsrlw _mm.srl _pi 16 right Logical PSRLW

- m psrlwi mmsrli_pil6 [rght Logical PSRLW
mpsrid _mm.srl _pi 32 right Logical PSRLD

-~ m psrl di mmsrli_pi32 |[right Logical PSRLDI
mpsrlq _mm srl _si 64 right Logical PSRLQ

_m psrl qi mmsrli_si64 |[rght Logical PSRLQI

140

_m4 mopsliw__nm64 m _ nb4 count)
Shift four 16-bit values in mleft the amount specified by count while shifting in zeros.
_ n64 mpsliwi(_nm4 m int count)

Shift four 16-bit values in mleft the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__nm64 mpslld(_nb4 m _ b4 count)
Shift two 32-bit values in mleft the amount specified by count while shifting in zeros.
64 mpsllidi(_nm4 m int count)

Shift two 32-bit values in mleft the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

_m4 mpsllg(__nmb4 m __nmb4 count)
Shift the 64-bit value in mleft the amount specified by count while shifting in zeros.
_m4 mpsllqgi(__nm4 m int count)

Shift the 64-bit value in mleft the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__mb4 mpsraw(__nm64 m _ nbB4 count)
Shift four 16-bit values in mright the amount specified by count while shifting in the sign bit.
__mB4 mpsrawi (__nm64 m int count)

Shift four 16-bit values in mright the amount specified by count while shifting in the sign bit. For
the best performance, count should be a constant.

__n64 mpsrad(__nb4 m __ b4 count)
Shift two 32-bit values in mright the amount specified by count while shifting in the sign bit.
__n64 mpsradi(__nm4 m int count)

Shift two 32-bit values in mright the amount specified by count while shifting in the sign bit. For
the best performance, count should be a constant.

64 mpsriw(__nb4 m __ b4 count)
Shift four 16-bit values in mright the amount specified by count while shifting in zeros.
64 mpsriwi(__m4 m int count)

Shift four 16-bit values in mright the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

_m4 mopsrld(__nm4 m _ nb4 count)

Shift two 32-bit values in mright the amount specified by count while shifting in zeros.

141

_m4 mopsrldi(__nb4 m int count)

Shift two 32-bit values in mright the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

__n64 mpsrlq(__nb4 m _ b4 count)
Shift the 64-bit value in mright the amount specified by count while shifting in zeros.
_mB4 mpsrlqgi(__nm4 m int count)

Shift the 64-bit value in mright the amount specified by count while shifting in zeros. For the best
performance, count should be a constant.

MMX(TM) Technology Logical Intrinsics

The prototypes for MMX technology intrinsics are in the mri nt ri n. h header file.

Intrinsic Alternate Operation Corresponding
Name Name Instruction
_m pand _mm and_si 64 Bitwise AND PAND

_m pandn _mm andnot _si 64 Logical NOT PANDN

_m _por _mm or _si 64 Bitwise OR POR

_m_pxor _mm _xor _si 64 Bitwise Exclusive OR PXOR

__n64 mpand(__nm64 ml, _ 64 nR)

Perform a bitwise AND of the 64-bit value in mlL with the 64-bit value in n2.
__mb64 mpandn(__n64 nl, _ nb4 nR)

Perform a logical NOT on the 64-bit value in mL and use the result in a bitwise AND with the 64-bit
value in n2.

__mb4 mopor(__nmb4 ml, _ n64 nR)
Perform a bitwise OR of the 64-bit value in mlL with the 64-bit value in n2.
__mb4 mpxor(__nb4 ml, _ nb4d nR)

Perform a bitwise XOR of the 64-bit value in ml with the 64-bit value in n?.

142

MMX(TM) Technology Compare Intrinsics

The prototypes for MMX technology intrinsics are in the mm nt ri n. h header file.

Intrinsic Alternate Comparison Number of Element Corresponding

Name Name Elements Bit Size Instruction

—m pcnpegb _nm _cnpeq_pi |Equal 8 8 PCVPEB
8

_m pcnpegqw | _mm cnpeq_pi |Equal 4 16 PCMPEQW
16

~m pcnpeqd _nm _cnpeq_pi |Equal 2 32 PCVPEQD
32

m pcnpgt b _nmm cnpgt _pi |Greater Than 8 8 PCVPGTB
8

_m pcnpgtw | mm cnpgt _pi |Greater Than 4 16 PCVMPGTW
16

_m pcnpgtd _mm cnpgt _pi |Greater Than 2 32 PCMPGTD
32

__mb64 _m pcnpegb(__n64 i,

__nb4 nR)

If the respective 8-bit values in mlL are equal to the respective 8-bit values in n?2 set the respective
8-bit resulting values to all ones, otherwise set them to all zeros.

__nB4 _mpcnpegwW __nb4 nil, _ nb4 nR)

If the respective 16-bit values in mlL are equal to the respective 16-bit values in n2 set the
respective 16-bit resulting values to all ones, otherwise set them to all zeros.

__nmb64 _mpcnpeqd(__n64 nl, _ nbB4 nR)

If the respective 32-bit values in mlL are equal to the respective 32-bit values in n2 set the
respective 32-bit resulting values to all ones, otherwise set them to all zeros.

__mb4 _mpcnpgtb(__nB4 nl, _ nB4 nR)

If the respective 8-bit values in mlL are greater than the respective 8-bit values in n2 set the
respective 8-bit resulting values to all ones, otherwise set them to all zeros.

__mb4 _mopcnpgtw(__nB64 nl, _ nB4 nR)

If the respective 16-bit values in mL are greater than the respective 16-bit values in n2 set the
respective 16-bit resulting values to all ones, otherwise set them to all zeros.

__m64 _mpcnpgtd(__nb64 ml, _ nb4 nR)

If the respective 32-bit values in mL are greater than the respective 32-bit values in n2 set the
respective 32-bit resulting values to all ones, otherwise set them all to zeros.

143

MMX(TM) Technology Set Intrinsics

The prototypes for MMX technology intrinsics are in the mm nt ri n. h header file.

Intrinsic Operation Number of Element Sighed Reverse
Name Elements Bit Size Order
_nm set zer o__ [setto zero 1 64 No No

Si 64

_nm set _pi 32 [setinteger values |2 32 No No
_mm set _pi 16 |[setinteger values (4 16 No No
_nm set _pi 8 |[setintegervalues |8 8 No No
mm set1 pi 3 [setintegervalues |2 32 Yes No

2

mm set1 pi 1l |setintegervalues |4 16 Yes No

6

_mm set 1 pi 8 [setinteger values (8 8 Yes No
_mm setr_pi 3 [setinteger values |2 32 No Yes

2

_mm setr_pi 1 [setinteger values (4 16 No Yes

6

_mm setr_pi 8 |setinteger values |8 8 No Yes

ﬂNote

In the following descriptions regarding the bits of the MMX(TM) register, bit O is the least significant and

bit 63 is the most significant.

__nmb4 _nmm setzero_si 64()

PXOR

Sets the 64-bit value to zero.

r:=0x0

__ b4 _mmset _pi32(int i1,

int io0)

(composite) Sets the 2 signed 32-bit integer values.

ro:=i0
rl:=il

__mb4 mmset pil6(short s3,

short s2,

short s1,

(composite) Sets the 4 signed 16-bit integer values.

ro :=wo0
rl1:=wl
r2 :=w2
r3:=w3

144

short s0)

__mb4 mmset _pi8(char b7, char b6, char b5, char b4, char b3, char b2,
b1, char b0)

(composite) Sets the 8 signed 8-bit integer values.

ro := bo
rl := bl
r7 := b7

_mb4 mmsetl pi32(int i)
(composite) Sets the 2 signed 32-bit integer values to i .
e

__mb4 mmsetl pil6(short s)

(composite) Sets the 4 signed 16-bit integer values to w.

ro:=w
rl1:=w
r2:=w
r3:=w

__mb4 mmsetl pi8(char b)

(composite) Sets the 8 signed 8-bit integer values to b.

r0:=b
rl:=b
.r.7.::b

_mb4 mmsetr_pi32(int i1, int i0)
(composite) Sets the 2 signed 32-bit integer values in reverse order.
ro:=i0
rl:.=il

__mB64 mmsetr_pil6(short s3, short s2, short sl1, short sO)

(composite) Sets the 4 signed 16-bit integer values in reverse order.

ro := w0
rl:.=wl
r2 :=w2
r3:=w3

__mb4 mmsetr_pi8(char b7, char b6, char b5, char b4, char b3, char b2,
bl, char bO0)

(composite) Sets the 8 signed 8-bit integer values in reverse order.

r0 := b0
rl:=bl
r7 := b7

char

char

145

MMX(TM) Technology Intrinsics on Itanium(TM) Architecture

MMX(TM) technology intrinsics provide access to the MMX technology instruction set on Itanium-based
systems. To provide source compatibility with the IA-32 architecture, these intrinsics are equivalent both
in name and functionality to the set of IA-32-based MMX intrinsics.

Some intrinsics have more than one name. When one intrinsic has two names, both names generate the
same instructions, but the first is preferred as it conforms to a newer naming standard.

The prototypes for MMX technology intrinsics are in the mm nt ri n. h header file.

Data Types

The C data type __n64 is used when using MMX technology intrinsics. It can hold eight 8-bit values, four
16-bit values, two 32-bit values, or one 64-bit value.

The __ nB4 data type is not a basic ANSI C data type. Therefore, observe the following usage restrictions:

* Use the new data type only on the left-hand side of an assignment, as a return value, or as a

parameter. You cannot use it with other arithmetic expressions (" +", " - ", and so on).

* Use the new data type as objects in aggregates, such as unions, to access the byte elements and
structures; the address of an __n64 object may be taken.

* Use new data types only with the respective intrinsics described in this documentation.
For complete details of the hardware instructions, see the Intel Architecture MMX Technology

Programmer's Reference Manual. For descriptions of data types, see the Intel Architecture Software
Developer's Manual, Volume 2.

Streaming SIMD Extensions

Intrinsics Support for Streaming SIMD Extensions

This section describes the C++ language-level features supporting the Streaming SIMD Extensions in the
Intel® C++ Compiler. These topics explain the following features of the intrinsics:

* Floating Point Intrinsics

* Arithmetic Operation Intrinsics
* Logical Operation Intrinsics

e Comparison Intrinsics

* Conversion Intrinsics

* Load Operations

* Set Operations

* Store Operations

* Cacheability Support

* Integer Intrinsics

146

* Memory and Initialization Intrinsics

¢ Miscellaneous Intrinsics

* Using Streaming SIMD Extensions on Itanium(TM) Architecture

The prototypes for Streaming SIMD Extensions intrinsics are in the xmi nt ri n. h header file.

Floating-point Intrinsics for Streaming SIMD Extensions

You should be familiar with the hardware features provided by the Streaming SIMD Extensions when
writing programs with the intrinsics. The following are four important issues to keep in mind:

e Certain intrinsics, suchas _mm | oadr _ps and _nmm cnpgt _ss, are not directly supported by the
instruction set. While these intrinsics are convenient programming aids, be mindful that they may
consist of more than one machine-language instruction.

* Floating-point data loaded or stored as __n28 objects must be generally 16-byte-aligned.

* Some intrinsics require that their argument be immediates, that is, constant integers (literals), due
to the nature of the instruction.

* The result of arithmetic operations acting on two NaN (Not a Number) arguments is undefined.
Therefore, FP operations using NaN arguments will not match the expected behavior of the

corresponding assembly instructions.

Arithmetic Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions intrinsics are in the xmi nt ri n. h header file.

Intrinsic Instruction |Operation RO R1 R2 R3
_mm add_ss [ADDSS Addition ao [op] bo al a2 a3

_nmm add_ps |ADDPS Addition a0 [op] b0 al [op] bl a2 [op] b2 a3 [op] b3
_mm sub_ss [SUBSS Subtraction ao [op] bo al a2 a3
_mm sub_ps |SUBPS Subtraction a0 [op] bo al [op] bl a2 [op] b2 a3 [op] b3
mm nul _ss [MJLSS Multiplication a0 [op] bO al a2 a3

_mm _nul _ps [MJLPS Multiplication ao [op] bo al [op] bl a2 [op] b2 a3 [op] b3
mm di v_ss [DI VSS Division a0 [op] bO al a2 a3
_mm di v_ps [DI VPS Division ao [op] bO al [op] bl a2 [op] b2 a3 [op] b3
mm.sqrt _s [SQRTSS Squared Root |[op] a0 al a2 a3

S

mm.sqrt_p [SQRTPS Squared Root [op] a0 [op] b1 [op] b2 [op] b3

S

_mm_rcp_ss |RCPSS Reciprocal [op] a0 al a2 a3

147

Intrinsic Instruction |Operation RO R1 R2 R3

_mm_rcp_ps |RCPPS Reciprocal [op] a0 [op] b1 [op] b2 [op] b3

mm rsqrt |RSQRTSS Reciprocal [op] a0 al a2 a3

SS Square Root

mm rsqrt_ |RSQRTPS Reciprocal [op] a0 [op] b1 [op] b2 [op] b3

ps Squared Root

_mm min_ss |M NSS Computes [op](a0,b0) al a2 a3
Minimum

_mm nin_ps (M NPS Computes [op](a0,b0) [op] (a1, bl) [op] (a2, b2) [op] (a3, b3)
Minimum

_mm_nmax_ss |MAXSS Computes [op](a0,b0) al a2 a3
Maximum

_mm_max_ps |MAXPS Computes [op](a0,b0) [op] (a1, b1) [op] (a2, b2) [op] (a3, b3)
Maximum

_ ml28 nmmadd ss(__ ml28 a, _ ml28 h)

Adds the lower SP FP (single-precision, floating-point) values of a and b ; the upper 3 SP FP
values are passed through from a.

ro :
rl:

a0 + b0
al ; r2 := a2 ; r3 := a3

_ ml28 mmadd ps(__ml28 a, _ ml28 b)

Adds the four SP FP values of a and b.

ro := a0 + b0
rl :=al + bl
r2 := a2 + b2
r3 := a3 + b3

_ ml28 nmmsub_ss(__ ml28 a, _ ml28 h)

Subtracts the lower SP FP values of a and b. The upper 3 SP FP values are passed through from
a.

a0 - bo
al ; r2 := a2 ; r3 := a3

ro
ri:
_ ml28 mmsub_ps(__ml28 a, _ ml28 b)

Subtracts the four SP FP values of a and b.

ro := a0 - bo
rl :=al - bl
r2 := a2 - b2
r3 := a3 - b3

148

_ 28 mmumul _ss(__ml28 a, _ ml28 b)

Multiplies the lower SP FP values of a and b ; the upper 3 SP FP values are passed through from

a.
ro := a0 * b0
rl :=al; r2 :=a2; r3 := a3

_ 28 mmumul _ps(__ml28 a, _ ml28 b)

Multiplies the four SP FP values of a and b.

ro := a0 * bo
rl :=al * bl
r2 := a2 * b2
r3 := a3 * b3

_ m28 mmdiv_ss(__ml28 a, _ nml28 b)
Divides the lower SP FP values of a and b ; the upper 3 SP FP values are passed through from a.

ro :
rl:

a0 / bo
al ; r2 := a2 ; r3 := a3

_ mM28 mmdiv_ps(__ml28 a, _ ml28 b)

Divides the four SP FP values of a and b.

ro := a0 / bo
rl :=al/ bl
r2 := a2/ b2
r3 := a3/ b3

_ nml28 mmsqrt_ss(__nl28 a)

Computes the square root of the lower SP FP value of a ; the upper 3 SP FP values are passed
through.

_ ml28 mmsqrt_ps(__nl28 a)

Computes the square roots of the four SP FP values of a.

ro := sqrt(a0)
rl:= sqrt(al)
r2 :=sqrt(a2)
r3 := sqrt(a3)

_ ml28 nmmrcp_ss(__m28 a)

Computes the approximation of the reciprocal of the lower SP FP value of a; the upper 3 SP FP
values are passed through.

ro :
rl:

reci p(a0)
al ; r2 := a2 ; r3 := a3

149

_ ml28 mmrcp_ps(__m28 a)

Computes the approximations of reciprocals of the four SP FP values of a.

ro := recip(a0)
rl :=recip(al)
r2 := recip(a2)
r3 := recip(ald)

_ mMl28 mmrsqrt_ss(__ml28 a)

Computes the approximation of the reciprocal of the square root of the lower SP FP value of a; the
upper 3 SP FP values are passed through.

ro :
rl:

reci p(sqrt(a0))
al ; r2 := a2 ; r3 := a3

_ ml28 mmrsqrt_ps(__ml28 a)

Computes the approximations of the reciprocals of the square roots of the four SP FP values of a.

ro := recip(sqrt(a0))
rl :=recip(sqgrt(al))
r2 :=recip(sqgrt(a2))
r3 :=recip(sqrt(a3l))

_ ml28 mmmin_ss(__ ml28 a, _ ml28 h)

Computes the minimum of the lower SP FP values of a and b; the upper 3 SP FP values are
passed through from a.

ro :
rl:

m n(a0, bO)
al ; r2 := a2 ; r3 := a3

_ mM28 mmmn_ps(__m28 a, _ ml28 b)

Computes the minimum of the four SP FP values of a and b.

ro := mn(a0, b0)
rl := mn(al, bl)
r2 :=mn(a2, b2)
r3 := mn(a3, b3)

_ ml28 mmnmax_ss(__ ml28 a, _ ml28 hb)

Computes the maximum of the lower SP FP values of a and b ; the upper 3 SP FP values are
passed through from a.

ro :
rl:

max (a0, bO0)
al ; r2 := a2 ; r3 := a3

_ ml28 mmmax_ps(__ml28 a, _ ml28 b)

150

Computes the maximum of the four SP FP values of a and b.

ro := max(a0, b0)
rl := max(al, bl)
r2 := max(az, b2)
r3 := max(a3, b3)

Logical Operations for Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions intrinsics are in the xmi nt ri n. h header file.

Intrinsic Operation Corresponding
Name Instruction
_mm and_ps Bitwise AND ANDPS

_nm andnot _ps Logical NOT ANDNPS
_mm_or _ps Bitwise OR ORPS

_nm _xor _ps Bitwise Exclusive OR XCRPS

_ ml28 mmand _ps(__ml28 a, _ ml28 b)

Computes the bitwise And of the four SP FP values of a and b.

ro := a0 & bhoO
rl :=al & bl
r2 := a2 & h2
r3 := a3 & b3

__nml28 _mm andnot _ps(__ nl28 a,

__ml28 b)

Computes the bitwise AND-NOT of the four SP FP values of a and b.

ro := ~a0 & b0
rl := ~al & bl
r2 := ~a2 & b2
r3 := ~a3 & b3

_ ml28 nmmor_ps(__ 28 a,

Computes the bitwise OR of the four SP FP values of a and b.

ro := a0
rl .= al
r2 .= a2
r3 := a3

_ ml28 nmxor_ps(__ ml28 a,

b0
bl
b2
b3

_ ni28 b)

28 b)

Computes bitwise XOR (exclusive-or) of the four SP FP values of a and b.

ro := a0
rl :=al
r2 .= a2
r3 .= a3

AN
AN
AN
AN

b0
bl
b2
b3

151

Comparisons for Streaming SIMD Extensions

Each comparison intrinsic performs a comparison of a and b. For the packed form, the four SP FP values
of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower SP FP values of
a and b are compared, and a 32-bit mask is returned; the upper three SP FP values are passed through
from a. The mask is setto Oxff ff f f f f for each element where the comparison is true and 0x0 where
the comparison is false.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmi nt ri n. h header file.

Intrinsic Comparison Corresponding
Name Instruction
_mm cnpeq_ss Equal CVPEQSS
_mm _cnpeq_ps Equal CMPEQPS
_mm cnpl t _ss Less Than CMPLTSS
_mmcnplt_ps Less Than CVPLTPS
_mm cnpl e_ss Less Than or Equal CMPLESS
_mm cnpl e_ps Less Than or Equal CVPLEPS
_mm cnpgt _ss Greater Than CMPLTSS
_nmm cnpgt _ps Greater Than CMPLTPS
_nm _cnpge_ss Greater Than or Equal CMVPLESS
_nmm cnpge_ps Greater Than or Equal CMPLEPS
_mm_cnpneq_ss Not Equal CMPNEQSS
_nmm cnpneq_ps Not Equal CVPNEQPS
_mmcnpnlt_ss Not Less Than CVPNLTSS
_nmm cnpnl t _ps Not Less Than CVMPNLTPS
_mm cnpnl e_ss Not Less Than or Equal CMPNLESS
_mm cnpnl e_ps Not Less Than or Equal CMPNLEPS
_nm cnpngt _ss Not Greater Than CVMPNLTSS
_nmm _cnpngt _ps Not Greater Than CVMPNLTPS
_nm cnpnge_ss Not Greater Than or Equal CMPNLESS
_nm _cnpnge_ps Not Greater Than or Equal CVMPNLEPS
_mm cnpord_ss Ordered CVPORDSS
_mm cnpord_ps Ordered CVPORDPS
_mm cnpunord_ss Unordered CMPUNORDSS

152

Intrinsic Comparison Corresponding
Name Instruction
_mm cnpunord_ps Unordered CVPUNORDPS
_mm coni eq_ss Equal COM SS
~mmconilt_ps Less Than COM SS
_mmconile_ss Less Than or Equal COM SS

_mm coni gt _ss Greater Than COM SS

_mm coni ge_ss Greater Than or Equal COM SS

_mm comni neq_ss Not Equal COM SS

_mm ucorm eq_sSs Equal UCOM SS
_mm ucom | t_ss Less Than UCOM SS
_mm ucom | e_ss Less Than or Equal UCOM SS
_mm ucom gt _ss Greater Than UCOM SS
_mm _ucom ge_ss Greater Than or Equal UCOM SS
_mm_ucom neq_ss Not Equal UCOM SS

_ ml28 nmmcnpeq_ss(__m28 a, _ nil28 b)

Compare for equality.

ro :
rl:

al ;

r2 .

az2

(a0 == bO) ? Oxffffffff : 0xO

;r3 = a3

_ ml28 nmmcnpeq_ps(__m28 a, _ nl28 b)

Compare for equality.

r0 := (a0 == b0) ? Oxffffffff : OxO
r1:= (al == bl) ? Oxffffffff : 0xO
r2 := (a2 == b2) ? Oxffffffff : OxO
r3 := (a3 == b3) ? Oxffffffff : OxO

_ m28 _mmecnplt_ss(__m28 a, _ nl28 b)

Compare for less-than.

ro :
rl:

al ;

r2 :

a2

(a0 < b0) ? Oxffffffff : OxO

;o r3 .= a3

_ m28 _mmecnplt_ps(__m28 a, _ nl28 b)

Compare for less-than.

ro := (a0
ri:= (al
r2 := (a2
r3 := (a3

<
<
<
<

bO)
b1)
b2)
b3)

?
?
?
?

0x0
0x0
0x0
0x0

153

_ nml28 mmecnple_ss(__ m28 a, _ ml28 b)
Compare for less-than-or-equal.

ro :
rl:

(a0 <= b0) ? Oxffffffff : OxO
al ; r2 := a2 ; r3 := a3

_ nml28 _mmecnple_ps(__m28 a, _ ml28 b)

Compare for less-than-or-equal.

ro := (a0 <= b0) ? Oxffffffff 0x0
ri:=(al <= bl) ? Oxffffffff 0x0
r2 := (a2 <= b2) ? Oxffffffff 0x0
r3 := (a3 <= b3) ? Oxffffffff 0x0

~ nml28 mmecnpgt _ss(__ ml28 a, _ ml28 h)
Compare for greater-than.

ro := (a0 > b0) ? Oxffffffff : OxO
rl :=al; r2 :=a2; r3 := a3

_ ml28 nmmcnpgt _ps(__m28 a, _ nl28 b)

Compare for greater-than.

r0 := (a0 > b0) ? Oxffffffff : 0xO
r1:= (al > bl) ? Oxffffffff : 0xO
r2 := (a2 > b2) 2 Oxffffffff : 0xO
r3 := (a3 > b3) ? Oxffffffff : OxO

_ ml28 nmmcnpge_ss(__ml28 a, _ nil28 b)
Compare for greater-than-or-equal.

ro :
rl:

(a0 >= b0) ? Oxffffffff : OxO
al ; r2 :=a2; r3 .= a3

_ ml28 nmmcnpge_ps(__m28 a, _ nil28 b)

Compare for greater-than-or-equal.

ro := (a0 >= b0) ? Oxffffffff 0x0
rl:= (al >= bl) ? Oxffffffff 0x0
r2 := (a2 >= b2) ? Oxffffffff 0x0
r3 := (a3 >= b3) ? Oxffffffff 0x0

__ml28 _nmcnpneq_ss(__ml28 a, _ nl28 b)
Compare for inequality.

ro :
rl:

(a0 '= b0) ? Oxffffffff : OxO
al ; r2 := a2 ; r3 .= a3

__ml28 _nmcnpneq_ps(__ml28 a, _ nl28 b)

Compare for inequality.

ro:= (a0 !'= b0) ? Oxffffffff 0x0
rli:=(al !'= bl) ? Oxffffffff : OxO
r2 := (a2 !'=b2) ? Oxffffffff : OxO
r3 := (a3 !'=b3) ?2 Oxffffffff : OxO

154

_ nml28 mmecnpnlt_ss(__ nl28 a, _ nml28 b)
Compare for not-less-than.

ro :
rl:

(a0 < b0) ? Oxffffffff : OxO
al ; r2 := a2 ; r3 := a3

_ 28 _mmecnpnlt_ps(__nl28 a, _ nml28 b)

Compare for not-less-than.

ro :=1!(a0 < b0) ? Oxffffffff 0x0
ri:=1(al < bl) ? Oxffffffff 0x0
r2 :=1(a2 < b2) ? Oxffffffff 0x0
r3 :=1!1(a3 < b3) ? Oxffffffff 0x0

~ nml28 mmecnpnle_ss(_ nl28 a, _ nl28 b)
Compare for not-less-than-or-equal.

0 :="!(a0 <= bO) ? Ooxffffffff : OxO
1:=al; r2:=a2; r3 := a3

_ m28 mmcnpnle_ps(__ ml28 a, _ ml28 b)

Compare for not-less-than-or-equal.

ro:=1!(a0 <= b0) ? Oxffffffff 0x0
rl :=1!(al <= bl) ? Oxffffffff 0x0
r2 :=1!1(a2 <= b2) ? Oxffffffff 0x0
r3 :=1(a3 <= b3) ? Oxffffffff 0x0

_ ml28 nmmcnpngt _ss(_ ml28 a, _ ml28 h)
Compare for not-greater-than.

ro :
rl:

(a0 > b0) ? Oxffffffff : OxO
al ; r2 :=a2; r3 .= a3

_ ml28 mmcnpngt _ps(__ml28 a, _ ml28 hb)

Compare for not-greater-than.

ro:=1!(a0 > b0) ? Oxffffffff 0x0
rl:=1!(al > bl) ? Oxffffffff 0x0
r2 :=1(a2 > b2) ? Oxffffffff 0x0
r3 :=1(a3 > b3) ? Oxffffffff 0x0

_ml28 _nmcnpnge_ss(__ml28 a, _ nl28 b)
Compare for not-greater-than-or-equal.

ro :
rl:

(a0 >= b0) ? Oxffffffff : OxO
al ; r2 := a2 ; r3 .= a3

__ml28 _nmcnpnge_ps(__ml28 a, _ nl28 b)

Compare for not-greater-than-or-equal.

r0 := ! (a0 >= b0) ? Oxffffffff : OxO
r1:=1(al >= bl) ? Oxffffffff : OxO
r2 := 1(a2 >= b2) ? Oxffffffff : OxO
r3 :=1(a3 >= b3) ? Oxffffffff : 0xO

155

_ ml28 mmcnpord_ss(_ ml28 a, _ ml28 b)
Compare for ordered.

ro :
rl:

(a0 ord? b0) ? Oxffffffff : OxO
al ; r2 := a2 ; r3 := a3

_ ml28 mmcnpord_ps(__ml28 a, _ ml28 b)

Compare for ordered.

ro := (a0 ord? b0) ? Oxffffffff 0x0
ri:= (al ord? bl) ? Oxffffffff 0x0
r2 := (a2 ord? b2) ? Oxffffffff 0x0
r3 := (a3 ord? b3) ? Oxffffffff 0x0

_ ml28 nmcnpunord_ss(_ ml28 a, _ ml28 h)
Compare for unordered.

ro :
rl:

(a0 unord? b0) ? Oxffffffff : OxO
al ; r2 := a2 ; r3 := a3

_ ml28 nm cnpunord_ps(__ml28 a, _ ml28 b)

Compare for unordered.

ro := (a0 unord? b0) ? Oxffffffff 0x0
rl := (al unord? bl) ? Oxffffffff 0x0
r2 := (a2 unord? b2) ? Oxffffffff 0x0
r3 := (a3 unord? b3) ? Oxffffffff 0x0

int _nmmconieq ss(__nl28 a, _ nl28 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r := (a0 == b0) ? Ox1 : OxO
int _mmeconilt_ss(__nl28 a, _ nl28 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r := (a0 < b0) ? Ox1 : OxO0
int _mmcomle_ss(__ml28 a, _ nil28 h)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less than or equal
to b, 1 is returned. Otherwise 0 is returned.

r := (a0 <= b0) ? Ox1 : OxO
int _mmcom gt _ss(__ml28 a, _ nil28 h)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than b are equal, 1
is returned. Otherwise 0 is returned.

r .= (a0 > b0) ? Ox1 : OxO

156

i nt

i nt

i nt

i nt

i nt

i nt

i nt

i nt

_mm conige_ss(_ nl28 a, _ nl28 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than or
equal to b, 1 is returned. Otherwise 0 is returned.

r .= (a0 >= b0) ? Ox1 : OxO

_mm conineq_ss(__nl28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not equal, 1 is
returned. Otherwise 0 is returned.

r .= (a0 !'=b0) ? Ox1 : OxO

_mm.ucom eq_ss(__ml28 a, _ nil28 b)

Compares the lower SP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r .= (a0 == b0) ? Ox1 : OxO

_mmucom It _ss(__ml28 a, _ nil28 b)

Compares the lower SP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r := (a0 < b0) ? Ox1 : OxO0

_mmucomile ss(__ m28 a, _ nl28 b)

Compares the lower SP FP value of a and b for a less than or equal to b. If a is less than or equal
to b, 1 is returned. Otherwise O is returned.

r := (a0 <= b0) ? Ox1 : O0xO

_mmucom gt _ss(__nl28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a greater than b. If a is greater than or equal to b,
1 is returned. Otherwise 0 is returned.

r := (a0 > b0) ? Ox1 : OxO

_mm.ucom ge_ss(__nl28 a, _ ml28 b)

Compares the lower SP FP value of a and b for a greater than or equal to b. If a is greater than or
equal to b, 1 is returned. Otherwise 0 is returned.

r .= (a0 >= b0) ? Ox1 : OxO

_mm.ucom neq_ss(__ml28 a, __ ml28 b)

Compares the lower SP FP value of a and b for a not equal to b. If a and b are not equal, 1 is
returned. Otherwise 0 is returned.

r .= (a0 !'=Db0) ? Ox1 : OxO

157

Conversion Operations for Streaming SIMD Extensions

The conversions operations are listed in the following table followed by a description of each intrinsic with
the most recent mnemonic haming convention. The alternate name is provided in case you have used

these intrinsics before.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmi nt ri n. h header file.

Intrinsic Alternate Corresponding
Name Name Instruction
_mm cvt _ss2si - mm cvtss_si 32 CVTSS2sI
_mm cvt _ps2pi - mm _cvt ps_pi 32 CVTPS2PI
_mmcvtt_ss2si _mm cvttss_si 32 CVTTSS2SI
mm cvtt_ps2pi | mm cvttps_pi 32 CVTTPS2PI
_mm cvt _si 2ss | mm cvtsi 32_ss CVTSI 2SS
_mm cvt _pi 2ps | mm _cvt pi 32_ps CVTTPS2PI
_mm cvtpi 16_ps composite
_mm _cvt pul6_ps composite
_mm cvt pi 8_ps composite
_mm cvt pu8_ps composite
_mm cvt pi 32x2_ps composite
_mm cvt ps_pi 16 composite
_mm cvtps_pi8 composite

int _mmcvt_ss2si(__ml28 a)

Convert the lower SP FP value of a to a 32-bit integer according to the current rounding mode.

r .= (int)a0

__mb4 _mmcvt_ps2pi (__m28 a)

Convert the two lower SP FP values of a to two 32-bit integers according to the current rounding
mode, returning the integers in packed form.

ro :
rl:

(int)a0
(int)al

int _mmecvtt _ss2si(__m28 a)

Convert the lower SP FP value of a to a 32-bit integer with truncation.

r .= (int)a0

158

__mb4 mmecvtt _ps2pi (__nml28 a)

Convert the two lower SP FP values of a to two 32-bit integer with truncation, returning the integers
in packed form.

ro :
ril:

_ ml28 mmcvt _si2ss(__nl28, int)

Convert the 32-bit integer value b to an SP FP value; the upper three SP FP values are passed
through from a.

ro :
ril:

(float)b
al ; r2 := a2 ; r3 := a3

_ ml28 _mmcvt _pi2ps(__nl28, _ nb4)

Convert the two 32-bit integer values in packed form in b to two SP FP values; the upper two SP
FP values are passed through from a.

ro := (float)b0
rli:= (float)bl
r2 := a2
r3 .= a3

inline _ m28 mmcvtpil6 _ps(__nb4 a)

Convert the four 16-bit signed integer values in a to four single precision FP values.

ro := (float)a0
rl := (float)al
r2 := (float)a2
r3 := (float)a3

inline __ m28 _mmcvtpul6 ps(__nb4 a)

Convert the four 16-bit unsigned integer values in a to four single precision FP values.

ro := (float)a0
rl := (float)al
r2 := (float)a2
r3 := (float)a3

inline _ nml28 nmcvtpi 8 ps(__nb4 a)

Convert the lower four 8-bit signed integer values in a to four single precision FP values.

ro := (float)a0
ri:= (float)al
r2 := (float)a2
r3 := (float)a3

_inline _ nml28 nmcvtpu8 ps(__nb4 a)

Convert the lower four 8-bit unsigned integer values in a to four single precision FP values.

ro := (float)a0
ri:= (float)al
r2 := (float)a2
r3 := (float)a3

159

_inline __nml28 _mmcvtpi32x2_ps(__nmb4 a, _ nb4 b)

Convert the two 32-bit signed integer values in a and the two 32-bit signed integer values in b to
four single precision FP values.

ro := (float)a0
rl := (float)al
r2 := (float)hbho
r3 := (float)bl

inline __nmb4 nmmcvtps_pil6(___m28 a)

Convert the four single precision FP values in a to four signed 16-bit integer values.

ro := (short)a0
rl := (short)al
r2 := (short)a2
r3 := (short)a3

inline __nmB4 mmcvtps_pi 8(__m28 a)

Convert the four single precision FP values in a to the lower four signed 8-bit integer values of the

result.

ro := (char)a0
rl := (char)al
r2 := (char)a2
r3 := (char)as

Load Operations for Streaming SIMD Extensions

See summary table in Summary of Memory and Initialization topic.
The prototypes for Streaming SIMD Extensions intrinsics are in the xmi nt ri n. h header file.
~ nml28 mmload _ss(float * p)

Loads an SP FP value into the low word and clears the upper three words.

*

ro : p
0.0 ; r2:=0.0; r3:=0.0

rl:

_ ml28 nmmload _psi(float * p)

Loads a single SP FP value, copying it into all four words.

ro .="*p
ri:=*p
r2 :=*p
r3 .=*p

160

_ m28 nmmload_ps(float * p)

Loads four SP FP values. The address must be 16-byte-aligned.

ro := p[0]
rl:= p[1]
r2 .= p[2]
r3 := p[3]

~ 28 _mmloadu_ps(float * p)

Loads four SP FP values. The address need not be 16-byte-aligned.

ro := p[0]
rl:= p[1]
r2 := p[2]
r3 := p[3]

_ ml28 nm |l oadr_ps(float * p)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

ro := p[3]
ri:= p[2]
r2 := p[1]
r3 := p[0]

Set Operations for Streaming SIMD Extensions

See summary table in Summary of Memory and Initialization topic.
The prototypes for Streaming SIMD Extensions intrinsics are in the xmi nt ri n. h header file.
_ ml28 nmmset _ss(float w)

Sets the low word of an SP FP value to wand clears the upper three words.

ro :

W
rl1 :=r2 :=r3 :=0.0

_ ml28 nmmset _psi(float w)
Sets the four SP FP values to w.
ro:=r1:=r2:=r3:=w

_ ml28 nmmset _ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs.

W
X
y
z

_‘
N
(IR T

161

_ m28 mmsetr_ps(float z, float y, float x, float w)

Sets the four SP FP values to the four inputs in reverse order.

ro :=z
rl .=y
r2 :=x
r3 .= w

__ml28 _mm setzero_ps(void)
Clears the four SP FP values.

ro:=r1:=r2:=r3 :=0.0

Store Operations for Streaming SIMD Extensions

See summary table in Summary of Memory and Initialization topic.
The prototypes for Streaming SIMD Extensions intrinsics are in the xmi nt ri n. h header file.
void mmstore ss(float * p, _ ml28 a)
Stores the lower SP FP value.
*p := a0
void nmmstore psli(float * p, _ nl28 a)

Stores the lower SP FP value across four words.

p[0] := a0
p[1] := a0
p[2] := a0
p[3] := a0

void mmstore ps(float *p, _ ml28 a)

Stores four SP FP values. The address must be 16-byte-aligned.

p[O] := a0
p[1] := al
p[2] := a2
p[3] := a3
void nmmstoreu_ps(float *p, _ nl28 a)

Stores four SP FP values. The address need not be 16-byte-aligned.

p[0] := a0
p[1l] := al
p[2] := a2
p[3] := a3

162

void _mm storer_ps(float * p, _ nl28 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.

p[0] := a3
p[1l] := a2
p[2] := al
p[3] := a0

_ nml28 mmnove _ss(_ ml28 a, _ ml28 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed through from a.

ro := bo
rl .= al
r2 .= a2
r3 .= a3

Cacheability Support Using Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions intrinsics are in the xmi nt ri n. h header file.
voi d _nm pause(voi d)

The execution of the next instruction is delayed an implementation specific amount of time. The
instruction does not modify the architectural state. This intrinsic provides especially significant
performance gain and described in more detail below.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at which the code
detects the release of the lock. For dynamic scheduling, the PAUSE instruction reduces the penalty of
exiting from the spin-loop.

Example of loop with the PAUSE instruction:
spi n_I| oop: pause

cnp eax, A

jne spin_loop

In the above example, the program spins until memory location A matches the value in register eax. The
code sequence that follows shows a test-and-test-and-set. In this example, the spin occurs only after the
attempt to get a lock has failed.

get _lock: nmov eax, 1

xchg eax, A ; Try to get |ock
cnp eax, 0 ; Test if successful
jne spin_|loop

Critical Section:

<critical_section code>

mov A, 0 ; Rel ease | ock

163

jmp continue

spi n_|l oop: pause; Spin-1oop hint
cnp 0, A; Check lock availability
jne spin_|loop

jmp get | ock

conti nue: <other code>

Note that the first branch is predicted to fall-through to the critical section in anticipation of successfully
gaining access to the lock. It is highly recommended that all spin-wait loops include the PAUSE instruction.
Since PAUSE is backwards compatible to all existing 1A-32 processor generations, a test for processor
type (a CPUID test) is not needed. All legacy processors will execute PAUSE as a NOP, but in processors
which use the PAUSE as a hint there can be significant performance benefit.

Integer Intrinsics Using Streaming SIMD Extensions

The integer intrinsics are listed in the table below followed by a description of each intrinsic with the most

recent mnemonic naming convention.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmi nt ri n. h header file.

Intrinsic Alternate Operation Corresponding

Name Name Instruction

_m pextrw mm extract _pi 16 Extract on of four words PEXTRW

_m pinsrw _mm.insert_pi 16 Insert a word Pl NSRW

_m _pnmaxsw _nmm_max_pi 16 Compute the maximum PMAXSW

_m pnmaxub _nmm_nmax_pu8 Compute the maximum, PVAXUB
unsigned

_m _pm nsw _mm min_pi 16 Compute the minimum PM NSW

-~ m pmi nub _mm nmin_pu8 Compute the minimum, PM NUB
unsigned

—m pnoviskb _mm _novenask _pi 8 Create an eight-bit mask PMOVVSKB

_m pmul huw _nmm_nul hi _pul6 Multiply, return high bits PMULHUW

_m pshufw mm shuffle pil6 Return a combination of four ~ [PSHUFW
words

_m masknmovq _mm nmasknove_si 64 [Conditional Store MASKMOVQ

_m pavgb _nmm avg_pu8 Compute rounded average PAVGB

_m _pavgw _mm_avg_pul6 Compute rounded average PAVGW

~_m psadbw _mm sad_pu8 Compute sum of absolute PSADBW
differences

For these intrinsics you need to empty the multimedia state for the mmx register. See The EMMS
Instruction: Why You Need It and When to Use It topic for more details.

164

int _mpextrw(__nb4 a, int n)
Extracts one of the four words of a. The selector n must be an immediate.
r:=(n==0) 2 a0 : ((n==1) ?2 al : ((n==2) ? a2 : a3))
__m4 mpinsrw(__nb4 a, int d, int n)

Inserts word d into one of four words of a. The selector n must be an

immediate.

ro :=(n==0) ? d: ao0;
ri:=(n==1) ?2 d: al,
r2 :=(n==2) ?2d: az
r3 :=(n==3) ?2d: as3;

__nmB64 _mpmaxsw(__nb4 a, _ nb4 b)

Computes the element-wise maximum of the words in a and b.

ro := mn(a0, b0)
rl := mn(al, bl)
r2 := mn(a2, b2)
r3 := mn(a3, b3)

__mB64 _m pmaxub(__n64 a, __nb4 b)

Computes the element-wise maximum of the unsigned bytes in a and b.

ro := mn(a0, b0)
ri:= mn(al, bl)
r7 .= mn(a7, b7)

_m4 mpmnsw(__nb4 a, __nb4 b)

Computes the element-wise minimum of the words in a and b.

ro := mn(a0, b0)
rl := mn(al, bl)
r2 :=mn(a2, b2)
r3 := mn(a3, b3)

__mB64 mpmnub(__nb4 a, _ nb4 b)

Computes the element-wise minimum of the unsigned bytes in a and b.

ro := mn(a0, b0)
rl := mn(al, bl)
r7 := nmin(a7, b7)

int _mpnoviskb(__nb4 a)
Creates an 8-bit mask from the most significant bits of the bytes in a.

r := sign(a7)<<7 | sign(a6)<<6 |... | sign(a0)

165

__mB64 mpmul hum __nb4 a, _ nb4 b)

Multiplies the unsigned words in a and b, returning the upper 16 bits of the 32-bit intermediate

results.

ro := hiword(a0 * bO)
ri := hiword(al * bl)
r2 := hiwrd(a2 * b2)
r3 := hiwrd(a3 * b3)

__m64 mpshufw(__nb4 a, int n)

Returns a combination of the four words of a. The selector n must be an immediate.

ro := word (n&0x3) of a

rl := word ((n>>2)&0x3) of a
r2 := word ((n>>4)&0x3) of a
r3 := word ((n>>6)&0x3) of a

void mmasknmovg(__nb4 d, _ nb64 n, char *p)

Conditionally store byte elements of d to address p. The high bit of each byte in the selector n
determines whether the corresponding byte in d will be stored.

if (sign(n0)) p[0] :=dO
if (sign(nl)) p[l] :=d1
if (sign(n7)) p[7] := d7

__mb4 mpavgb(__nb4 a, _ nbB4 b)
Computes the (rounded) averages of the unsigned bytes in a and b.

t = (unsigned short)a0 + (unsigned short) b0
ro =(t >>1) | (t & 0x01)

t = (unsi gned short)a7 + (unsigned short) b7
r7 = (unsigned char)((t >> 1) | (t & 0x01))

__mb4 _mpavgw(__nb4 a, _ nb4 b)
Computes the (rounded) averages of the unsigned words in a and b.

t = (unsigned int)a0 + (unsigned int)b0
ro =(t >>1) | (t & 0x01)

t = (unsi gned word)a7 + (unsigned word)b7
r7 = (unsigned short)((t >> 1) | (t & 0x01))

__nmb64 mpsadbw(__nb4 a, _ nb4 b)

Computes the sum of the absolute differences of the unsigned bytes in a and b, returning he value
in the lower word. The upper three words are cleared.

ro
ril

abs(a0-b0) +... + abs(a7-b7)
rz=r3=20

166

Memory and Initialization Using Streaming SIMD Extensions

This section describes the | oad, set, and st or e operations, which let you load and store data into
memory. The | oad and set operations are similar in that both initialize __ n128 data. However, the set
operations take a float argument and are intended for initialization with constants, whereas the | oad
operations take a floating point argument and are intended to mimic the instructions for loading data from
memory. The st or e operation assigns the initialized data to the address.

The intrinsics are listed in the following table. Syntax and a brief description are contained the following

topics.

The prototypes for Streaming SIMD Extensions intrinsics are in the xmi nt ri n. h header file.

Intrinsic Alternate Operation Corresponding
Name Name Instruction
_mm | oad_ss Load the low value and clear [MOVSS

the three high values

~mm | oad_psl

mm | oadl ps

Load one value into all four
words

MOVSS + Shuffling

_mm | oad_ps Load four values, address MOVAPS
aligned
nmm| oadu_ps Load four values, address MOVUPS

unaligned

_mm | oadr _ps

Load four values, in reverse
order

MOVAPS + Shuffling

_nm set _ss

Set the low value and clear the
three high values

Composite

_mm set _ps1

_mm setl ps

Set all four words with the same
value

Composite

_nmm set _ps Set four values, address aligned{Composite
_mm setr_ps Set four values, in reverse order (Composite
_nm set zer o_ps Clear all four values Composite
_mm store_ss Store the low value MOVSS

_mm store_psl

_mm storel_ps

Store the low value across all
four words. The address must
be 16-byte aligned.

Shuffling + MOVSS

_mm st ore_ps Store four values, address MOVAPS
aligned
mm st oreu_ps Store four values, address MOVUPS

unaligned

_nmm storer_ps

Store four values, in reverse
order

MOVAPS + Shuffling

_mm nove_ss

Set the low word, and pass in
three high values

MOVSS

167

Intrinsic Alternate Operation Corresponding
Name Name Instruction
_mm_get csr Return register contents STMXCSR
_nm_set csr Control Register LDMXCSR

_mm prefetch

_nmm stream pi

_nm stream ps

_mm sfence

_ ml28 nmmload _ss(float const*a)

Loads an SP FP value into the low word and clears the upper three words.

ro :
ri

_ ml28 nmmload psl(float const*a)

*a
0.0 ; r2 :=0.0; r3:

Loads a single SP FP value, copying it into all four words.

ro .= *a
rl :=*a
r2 .= *a
r3 := *a

_ ml28 nmmload ps(float const*a)

Loads four SP FP values. The address must be 16-byte-aligned.

ro := a[0]
rli:= a[1l]
r2 := a[2]
r3 := a[3]

_ ml28 _mm | oadu_ps(float const*a)

Loads four SP FP values. The address need not be 16-byte-aligned.

ro := a[0]
rl:= a[1l]
r2 := af2]
r3 := a[3]

__ml28 _mm | oadr_ps(float const*a)

Loads four SP FP values in reverse order. The address must be 16-byte-aligned.

ro := a[3]
rl := a[2]
r2 := a[1]
r3 := a[0]

168

_ m28 nmmset_ss(float a)
Sets the low word of an SP FP value to a and clears the upper three words.

ro :
ril:

c

rz:=r3:=0.0

_ nml28 _mm set _psi(float a)
Sets the four SP FP values to a.
ro:=rl1:=r2:=r3:=a

_ nml28 _mmset_ps(float a, float b, float c, float d)
Sets the four SP FP values to the four inputs.
ro :
ri:

r2 :
r3 :

I n
O 0OTQ

_ ml28 nmmsetr_ps(float a, float b, float c, float d)
Sets the four SP FP values to the four inputs in reverse order.

ro :
rl:
r2 :
r3 :

DT OQ

__ml28 nm setzero_ps(void)
Clears the four SP FP values.
ro:=r1:=r2:=r3:=0.0

void mmstore_ss(float *v, _ ml28 a)
Stores the lower SP FP value.
*v 1= a0

void mmstore_psi(float *v, _ nil28 a)

Stores the lower SP FP value across four words.

v[0] := a0
v[1l] := a0
v[2] := a0
v[3] := a0
void _nmmstore_ps(float *v, _ nl28 a)

Stores four SP FP values. The address must be 16-byte-aligned.

v[0] := a0
vi1] := al
v[2] := a2
v[3] := a3

169

voi d

voi d

_mm storeu_ps(float *v, _ nl28 a)

Stores four SP FP values. The address need not be 16-byte-aligned.

v[0] := a0
v[1l] := al
vi2] := a2
v[3] := a3
_mmstorer_ps(float *v, _ ml28 a)

Stores four SP FP values in reverse order. The address must be 16-byte-aligned.

v[0] := a3
v[1l] := a2
v[2] := al
v[3] := a0

_ ml28 nmmnove _ss(__ nl28 a, _ nl28 b)

Sets the low word to the SP FP value of b. The upper 3 SP FP values are passed through from a.

ro := b0
rl :=al
r2 .= a2
r3 := a3

unsi gned int _nmmgetcsr(void)

voi d

voi d

voi d

voi d

voi d

170

Returns the contents of the control register.
_mm setcsr(unsigned int i)

Sets the control register to the value specified.
_mm prefetch(char const*a, int sel)

(uses PREFETCH) Loads one cache line of data from address a to a location "closer" to the
processor. The value sel specifies the type of prefetch operation: the constants _MM HI NT_TO,
_MM HI NT_T1, MM HI NT_T2, and _MM HI NT_NTA should be used, corresponding to the type of
pr ef et ch instruction.

_mmstreampi (__nm64 *p, __nb64 a)

(uses MOVNTQ) Stores the data in a to the address p without polluting the caches. This intrinsic
requires you to empty the multimedia state for the mx register. See The EMMS Instruction: Why
You Need It and When to Use It topic.

_mm stream ps(float *p, _ ml28 a)

(see MOVNTPS) Stores the data in a to the address p without polluting the caches. The address
must be 16-byte-aligned.

_mm sfence(voi d)

(uses SFENCE) Guarantees that every preceding store is globally visible before any subsequent
store.

Miscellaneous Intrinsics Using Streaming SIMD Extensions

The prototypes for Streaming SIMD Extensions intrinsics are in the xmmi nt ri n. h header file.

Intrinsic Operation Corresponding
Name Instruction

_mm shuffle_ps Shuffle SHUFPS
_nmm_unpackhi _ps Unpack High UNPCKHPS

_mm unpackl o_ps Unpack Low UNPCKLPS
_mm_loadh_pi Load High MOVHPS reg, mem
_mm_storeh_pi Store High MOVHPS mem reg
_mm_movehl_ps Move High to Low MOVHLPS
_mm_movelh_ps Move Low to High MOVLHPS

~mm_loadl_pi

Load Low

MOVLPS reg, nmem

_mm_storel_pi

Store Low

MOVLPS mem reg

_mm_movemask_ps

Create four-bit mask

MOVMSKPS

_ ml28 mmshuffle ps(__nl28 a, _ nl28 b,

unsi gned i nt i mMmB)

Selects four specific SP FP values from a and b, based on the mask i 8. The mask must be an
immediate. See Macro Function for Shuffle Using Streaming SIMD Extensions for a description of

the shuffle semantics.

__ ml28 _mmunpackhi _ps(__nl28 a, _ ml28 b)

Selects and interleaves the upper two SP FP values from a and b.

ro := a2
rl := b2
r2 := a3
r3 := b3

_ ml28 nmunpacklo_ps(__ ml28 a, _ ml28 b)

Selects and interleaves the lower two SP FP values from a and b.

ro := a0
rl := b0
r2 .= al
r3 := bl

171

_ m28 nmmloadh_pi(__m28, _ nmb64 const *p)

voi d

Sets the upper two SP FP values with 64 bits of data loaded from the address p.

ro .= a0
rl :=al
r2z .= *p0o
r3 .= *pl

_mmstoreh_pi(__nm64 *p, _ ml28 a)
Stores the upper two SP FP values to the address p.

*p0

= a2
*pl .= a

3

__ml28 mm novehl ps(__nl28 a, _ ml28 b)

Moves the upper 2 SP FP values of b to the lower 2 SP FP values of the result. The upper 2 SP FP
values of a are passed through to the result.

r3 := a3
r2 .= a2
rl := b3
ro := b2

_ ml28 mmnovel h ps(__ ml28 a, _ ml28 h)

Moves the lower 2 SP FP values of b to the upper 2 SP FP values of the result. The lower 2 SP FP
values of a are passed through to the result.

r3 := bl
r2 := bo
rl .= al
ro := a0

_ m28 _mmloadl _pi(__ml28 a, __nb4 const *p)

voi d

Sets the lower two SP FP values with 64 bits of data loaded from the address p; the upper two
values are passed through from a.

ro .= *po0
ri .= *pl
r2z .= a2
r3 := a3

_mmstorel _pi(__nb4 *p, _ nl28 a)
Stores the lower two SP FP values of a to the address p.

*p0
*pl

a0
al

int _nm novemask ps(__ ml28 a)

172

Creates a 4-bit mask from the most significant bits of the four SP FP values.

r :=sign(al3)<<3 | sign(a2)<<2 | sign(al)<<l | sign(a0)

Using Streaming SIMD Extensions on Itanium(TM) Architecture

The Streaming SIMD Extensions intrinsics provide access to Itanium(TM) instructions for Streaming SIMD
Extensions. To provide source compatibility with the IA-32 architecture, these intrinsics are equivalent
both in name and functionality to the set of IA-32-based Streaming SIMD Extensions intrinsics.

To write programs with the intrinsics, you should be familiar with the hardware features provided by the
Streaming SIMD Extensions. Keep the following four important issues in mind:

* Certain intrinsics are provided only for compatibility with previously-defined 1A-32 intrinsics. Using
them on Itanium-based systems probably leads to performance degradation. See section below.

* Floating-point (FP) data loaded stored as __nil28 objects must be 16-byte-aligned.

* Some intrinsics require that their arguments be immediates— that is, constant integers (literals),
due to the nature of the instruction.

Data Types

The new data type __ nil28 is used with the Streaming SIMD Extensions intrinsics. It represents a 128-bit
guantity composed of four single-precision FP values. This corresponds to the 128-bit IA-32 Streaming
SIMD Extensions register.

The compiler aligns __ml28 local data to 16-byte boundaries on the stack. Global data of these types is
also 16 byte-aligned. To align i nt eger, f | oat, or doubl e arrays, you can use the decl spec
alignment.

Because Itanium instructions treat the Streaming SIMD Extensions registers in the same way whether
you are using packed or scalar data, there is no __nB2 data type to represent scalar data. For scalar
operations, use the __ ml28 objects and the "scalar" forms of the intrinsics; the compiler and the
processor implement these operations with 32-bit memory references. But, for better performance the
packed form should be substituting for the scalar form whenever possible.

The address of a ___mlL28 object may be taken.

For more information, see Intel Architecture Software Developer's Manual, Volume 2: Instruction Set
Reference Manual, Intel Corporation, doc. number 243191.

Implementation on Itanium-based systems

Streaming SIMD Extensions intrinsics are defined for the __ nll28 data type, a 128-bit quantity consisting
of four single-precision FP values. SIMD instructions for Itanium-based systems operate on 64-bit FP
register quantities containing two single-precision floating-point values. Thus, each __ n128 operand is
actually a pair of FP registers and therefore each intrinsic corresponds to at least one pair of Itanium
instructions operating on the pair of FP register operands.

Compatibility versus Performance

Many of the Streaming SIMD Extensions intrinsics for Itanium-based systems were created for
compatibility with existing I1A-32 intrinsics and not for performance. In some situations, intrinsic usage that
improved performance on IA-32 will not do so on Itanium-based systems. One reason for this is that some
intrinsics map nicely into the 1A-32 instruction set but not into the Itanium instruction set. Thus, it is
important to differentiate between intrinsics which were implemented for a performance advantage on
Itanium-based systems, and those implemented simply to provide compatibility with existing IA-32 code.

173

The following intrinsics are likely to reduce performance and should only be used to initially port legacy
code or in non-critical code sections:

* Any Streaming SIMD Extensions scalar intrinsic (_ss vari et y) - use packed (_ps) version if
possible

e comiand uconi Streaming SIMD Extensions comparisons - these correspond to IA-32 COM SS
and UCOM SS instructions only. A sequence of Itanium instructions are required to implement
these.

* Conversions in general are multi-instruction operations. These are particularly expensive:
_mmcvtpi 16_ps, _mm cvtpul6 _ps, nmmcvtpi 8 ps, nmm cvtpu8_ps,
_mm cvt pi 32x2_ps, _mmcvtps_pi 16, nmcvtps_pi 8

* Streaming SIMD Extensions utility intrinsic _mm _novenmask_ps

If the inaccuracy is acceptable, the SIMD reciprocal and reciprocal square root approximation intrinsics
(rcp and r sqr t) are much faster than the true di v and sqr t intrinsics.

Macro Functions

Macro Function for Shuffle Using Streaming SIMD Extensions

The Streaming SIMD Extensions provide a macro function to help create constants that describe shuffle
operations. The macro takes four small integers (in the range of 0 to 3) and combines them into an 8-bit
immediate value used by the SHUFPS instruction. See the example below.

Shuffle Function Macro

_MM SHUFFLE (=, %, x %)
S* expands £o the following walus *7
(==<6) | (y==4) | (x=<2)| w

You can view the four integers as selectors for choosing which two words from the first input operand and
which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

- g

127 0
;ml = (2 blc]d]
127 0
;PomZ o= (2 [flglh]
w3 = @mm shuffle psiml, nZ,
_MM SHUOFFLE(l,0,3,2))
127 0
te ;om3 o= (g [hlalb] 2

174

Macro Functions to Read and Write the Control Registers

The following macro functions enable you to read and write bits to and from the control register. For
details, see Set Operations. For Itanium(TM)-based systems, these macros do not allow you to access all
of the bits of the FPSR. See the descriptions for the get f psr () and set f psr () intrinsics in the Native

Intrinsics for Itanium Instructions topic.

Exception State Macros

Macro Arguments

MM _SET_EXCEPTI ON_STATE(X)

MM_EXCEPT_I NVALI D

MM _GET_EXCEPTI ON_STATE()

MM _EXCEPT_DI V_ZERO

MM_EXCEPT_DENCRM

Macro Definitions
Write to and read from the sixth-least significant control register
bit, respectively.

MM EXCEPT_OVERFLOW

MM _EXCEPT_UNDERFLOW

MM_EXCEPT_| NEXACT

The following example tests for a divide-by-zero exception.

Exception State Macros with _MM_EXCEPT_DIV_ZERO

if (MM GET EXCEPTION ITATE(«] «&

F#* Esception har occurred *f

+

_PM _EXCEPT DTV _ZERO)

Exception Mask Macros

Macro Arguments

MM _SET_EXCEPTI ON_MASK(X)

MM _MASK_| NVALI D

MM _GET_EXCEPTI ON_MASK ()

MM_MASK_DI V_ZERO

MM MASK_DENORM

Macro Definitions

Write to and read from the seventh through twelfth control
register bits, respectively. Note: All six exception mask bits are
always affected. Bits not set explicitly are cleared.

 MM_MASK_OVERFLOW

MM_MASK_UNDERFLOW

 MM_MASK_| NEXACT

The following example masks the overflow and underflow exceptions and unmasks all other exceptions.

Exception Mask with _MM_MASK_OVERFLOW and _MM_MASK_UNDERFLOW

MM _SET_EXCEPTI ON_MASK(MM_MASK_OVERFLOW |

_MM_MASK_UNDERFLOW

175

Rounding Mode Macro Arguments

MM _SET_ROUNDI NG_MODE(x) MM _ROUND_NEAREST
MM _GET_ROUNDI NG_MODE() MM _ROUND DOWN
Macro Definition _MM_ROUND_UP

Write to and read from bits thirteen and fourteen of the control

register.

MM _ROUND_TOWARD_ZERO

The following example tests the rounding mode for round toward zero.

Rounding Mode with _MM_ROUND_TOWARD_ZERO

i f (_MM GET_ROUNDI NG MODE() == MV ROUND TOWARD ZERO)
{
/* Roundi ng node is round toward zero */
}
Flush-to-Zero Mode Macro Arguments
MM _SET_FLUSH_ZERO_MODE(x) VMM _FLUSH_ZERO ON
_MM GET_FLUSH_ZERO_ MODE() MM _FLUSH_ZERO OFF
Macro Definition
Write to and read from bit fifteen of the control register.

The following example disables flush-to-zero mode.

Flush-to-Zero Mode with _MM_FLUSH_ZERO_OFF

MM _SET_FLUSH_ZERO MODE(_MM FLUSH_ZERO OFF)

Macro Function for Matrix Transposition

The Streaming SIMD Extensions also provide the following macro function to transpose a 4 by 4 matrix of
single precision floating point values.

_MM TRANSPOSE4_PS(row0, rowl, row2, rowd)

The arguments r ow0, r owl, r ow2, and r ow3 are __ml28 values whose elements form the
corresponding rows of a 4 by 4 matrix. The matrix transposition is returned in arguments r ow0, r owl,

r ow2, and r ow3 where r ow0 now holds column 0 of the original matrix, r owl now holds column 1 of the
original matrix, and so on.

176

The transposition function of this macro is illustrated in the "Matrix Transposition Using the

_MM_TRANSPCSE4_PS" figure.

Matrix Transposition Using _MM_TRANSPOSE4_PS Macro

rowd| Mg | ¥g | V| rowel | Mg My Mp i Ma |

oWl My L | Vh | rewl | Yy L CRR 1" ¥a |

row2] Ma | ve | Fa| W | row2| Zo| B | Za| Zs |

rowd| Xy | Ys | Zs | V| rowd | Wb | VR | W | W |

lestist : .muul .Ieﬁl ; sl g
signilisan sigribaan sigri bt foqrificant

eyl ebmagy| el | e
ORI

177

Streaming SIMD Extensions 2

Overview of Streaming SIMD Extensions 2 Intrinsics

This section describes the C++ language-level features supporting the Intel® Pentium® 4 processor
Streaming SIMD Extensions 2 in the Intel® C++ Compiler, which are divided into two categories:

* Floating-point Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the double-precision floating-point data type (___nml28d).

* Integer Intrinsics -- describes the arithmetic, logical, compare, conversion, memory, and
initialization intrinsics for the extended-precision integer data type (__nil28i).

E'}Note

The Pentium 4 processor Streaming SIMD Extensions 2 intrinsics are defined only for IA-32 platforms, not
Itanium(TM)-based platforms. Pentium 4 processor Streaming SIMD Extensions 2 operate on 128 bit
guantities—2 64-bit double precision floating point values. The Itanium processor does not support parallel
double precision computation, so Pentium 4 processor Streaming SIMD Extensions 2 are not
implemented on Itanium-based systems.

For more detalils, refer to the Pentium® 4 processor Streaming SIMD Extensions 2 External Architecture
Specification (EAS) and other Pentium 4 processor manuals available for download from the
developer.intel.com web site. You should be familiar with the hardware features provided by the
Streaming SIMD Extensions 2 when writing programs with the intrinsics. The following are three important
issues to keep in mind:

* Certain intrinsics, suchas _mm | oadr _pd and _mm cnpgt _sd, are not directly supported by the
instruction set. While these intrinsics are convenient programming aids, be mindful of their
implementation cost.

* Data loaded or stored as __ L 28d objects must be generally 16-byte-aligned.

* Some intrinsics require that their argument be immediates, that is, constant integers (literals), due
to the nature of the instruction.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the enmi nt ri n. h header file.

178

Floating Point Intrinsics

Floating-point Arithmetic Operations for Streaming SIMD Extensions

2

The arithmetic operations for the Streaming SIMD Extensions 2 are listed in the following table and are

followed by descriptions of each intrinsic.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

Intrinsic Corresponding Operation RO R1
Name Instruction Value Value
_mm_add_sd ADDSD Addition a0 [op] bO al
_mm_add_pd ADDPD Addition a0 [op] b0 al [op] b1
_mm_sub_sd SUBSD Subtraction a0 [op] b0 al
_mm_sub_pd SUBPD Subtraction a0 [op] bO al [op] b1
_mm_mul_sd MULSD Multiplication a0 [op] bO al
_mm_mul_pd MULPD Multiplication a0 [op] bO al [op] b1
_mm_div_sd DIVSD Division a0 [op] b0 al
_mm_div_pd DIVPD Division a0 [op] b0 al [op] b1
_mm_sqrt_sd SQRTSD Computes Square Root |a0 [op] b0 al
_mm_sqrt_pd SQRTPD Computes Square Root |a0 [op] b0 al [op] b1
_mm_min_sd MINSD Computes Minimum a0 [op] bO al
_mm_min_pd MINPD Computes Minimum a0 [op] bO al [op] b1
~mm_max_sd MAXSD Computes Maximum a0 [op] bO al
_mm_max_pd MAXPD Computes Maximum a0 [op] b0 al [op] b1

179

_ nml28d mm add_sd(__nl28d a, __ nl28d b)

Adds the lower DP FP (double-precision, floating-point) values of a and b ; the upper DP FP value
is passed through from a.

ro := a0 + b0
rl .= al

__ ml28d mm add_pd(__nl28d a, _ nl28d b)
Adds the two DP FP values of a and b.

ro :
rl:

a0 + b0
al + bl

_ ml28d mmsub _sd(__nl28d a, _ nl28d hb)
Subtracts the lower DP FP value of b from a. The upper DP FP value is passed through from a.

ro :
rl:

a0 - bo
al

_ ml28d mmsub _pd(_ nl28d a, _ nl28d b)
Subtracts the two DP FP values of b from a.

ro :
rl:

a0 - bo
al - bl

_ ml28d mmnul _sd(__nl28d a, _ nil28d b)
Multiplies the lower DP FP values of a and b. The upper DP FP is passed through from a.

ro :
rl:

a0 * bO
al

_ ml28d mmnmul _pd(__nl28d a, _ nl28d b)
Multiplies the two DP FP values of a and b.

ro :
rl:

a0 * b0
al * bl

_ m28d _mmdiv_sd(__nl28d a, __nl28d b)
Divides the lower DP FP values of a and b. The upper DP FP value is passed through from a.

ro :
rl:

a0 / bo
al

_ ml28d mmdiv_pd(__nl28d a, _ nil28d b)
Divides the two DP FP values of a and b.

ro :
rl:

a0 / bo
al / bl

180

_ ml28d mmsqrt_sd(__m28d a, _ ml28d b)

Computes the square root of the lower DP FP value of b. The upper DP FP value is passed
through from a.

ro := sqrt(b0)
rl al

181

_ ml28d _mmsqrt_pd(__m28d a)
Computes the square roots of the two DP FP values of a.

ro := sqrt(a0)
rl := sqrt(al)

_ ml28d mmmin_sd(__nl28d a, _ nml28d b)

Computes the minimum of the lower DP FP values of a and b. The upper DP FP value is passed
through from a.

ro := mn (a0, bO0)
rli .= al

_ ml28d mmmin_pd(_ nl28d a, _ nl28d b)
Computes the minima of the two DP FP values of a and b.

ro := mn(a0, b0)
ri := mn(al, bl)

_ ml28d mm nmax_sd(__nl28d a, _ nil28d b)

Computes the maximum of the lower DP FP values of a and b. The upper DP FP value is passed
through from a.

ro :
rl:

max (a0, bO0)
al

_ ml28d mmnmex_pd(__ nl28d a, _ nl28d b)
Computes the maxima of the two DP FP values of a and b.

ro :
rl:

max(a0, b0)
max(al, bl)

182

Logical Operations for Streaming SIMD Extensions 2

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
_ ml28d mmand _pd(__nl28d a, _ nil28d h)
(uses ANDPD) Computes the bitwise AND of the two DP FP values of a and b.

ro :
rl:

a0 & b0
al & bl

_ ml28d _nmm andnot _pd(__nl28d a, __ ml28d b)

(uses ANDNPD) Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-
bit value in a.

ro :
rl:

(~a0) & b0
(~al) & bl

_ ml28d mmor _pd(__ ml28d a, _ nml28d b)
(uses ORPD) Computes the bitwise OR of the two DP FP values of a and b.

ro :
rl:

a0 | bO
al | bl

_ ml28d mm xor_pd(__nl28d a, _ nl28d b)
(uses XORPD) Computes the bitwise XOR of the two DP FP values of a and b.

ro :
ril:

a0 ~ b0
al N bl

183

Comparison Operations for Streaming SIMD Extensions 2

Each comparison intrinsic performs a comparison of a and b. For the packed form, the two DP FP values
of a and b are compared, and a 128-bit mask is returned. For the scalar form, the lower DP FP values of
a and b are compared, and a 64-bit mask is returned; the upper DP FP value is passed through from a.
The mask is setto Oxffffffffffffffff for each element where the comparison is true and 0x0
where the comparison is false. The r following the instruction name indicates that the operands to the
instruction are reversed in the actual implementation. The comparison intrinsics for the Streaming SIMD
Extensions 2 are listed in the following table followed by detailed descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

Intrinsic Corresponding Compare

Name Instruction For:
_mm_cmpeq_pd CMPEQPD Equality
_mm_cmplt_pd CMPLTPD Less Than
_mm_cmple_pd CMPLEPD Less Than or Equal
_mm_cmpgt_pd CMPLTPDr Greater Than
_mm_cmpge_pd CMPLEPDr Greater Than or Equal
_mm_cmpord_pd CMPORDPD Ordered
_mm_cmpunord_pd CMPUNORDPD Unordered
_mm_cmpneqg_pd CMPNEQPD Inequality
_mm_cmpnlt_pd CMPNLTPD Not Less Than
_mm_cmpnle_pd CMPNLEPD Not Less Than or Equal
_mm_cmpngt_pd CMPNLTPDr Not Greater Than
_mm_cmpnge_pd CMPLEPDr Not Greater Than or Equal
_mm_cmpeq_sd CMPEQSD Equality
_mm_cmplt_sd CMPLTSD Less Than
_mm_cmple_sd CMPLESD Less Than or Equal
_mm_cmpgt_sd CMPLTSDr Greater Than
_mm_cmpge_sd CMPLESDr Greater Than or Equal
_mm_cmpord_sd CMPORDSD Ordered
~mm_cmpunord_sd CMPUNORDSD Unordered

184

Intrinsic Corresponding Compare

Name Instruction For:
_mm_cmpneq_sd CMPNEQSD Inequality
_mm_cmpnlt_sd CMPNLTSD Not Less Than
_mm_cmpnle_sd CMPNLESD Not Less Than or Equal
_mm_cmpngt_sd CMPNLTSDr Not Greater Than
_mm_cmpnge_sd CMPNLESDR Not Greater Than or Equal
_mm_comieq_sd COMISD Equality
_mm_comilt_sd COMISD Less Than
_mm_comile_sd COMISD Less Than or Equal
_mm_comigt_sd COMISD Greater Than
_mm_comige_sd COMISD Greater Than or Equal
_mm_comineq_sd COMISD Not Equal
_mm_ucomieq_sd UCOMISD Equality
_mm_ucomilt_sd UCOMISD Less Than
_mm_ucomile_sd UCOMISD Less Than or Equal
_mm_ucomigt_sd UCOMISD Greater Than
_mm_ucomige_sd UCOMISD Greater Than or Equal
_mm_ucomineq_sd UCOMISD Not Equal

185

_ ml28d _mm cnpeq_pd(__nl28d a, _ nl28d b)
Compares the two DP FP values of a and b for equality.

ro :
rl:

(a0 == b0) ? Oxffffffffffffffff : OxO

(al == bl) ? Oxffffffffffffffff . OxO

_ m28d _mmecnplt_pd(__nl28d a, _ nl28d b)
Compares the two DP FP values of a and b for a less than b.

ro :
rl:

(a0 < b0) ? Ox
(al < bl) ? Ox

fEffffffffffffeef
FIFFffffffffffeef
_nml28d _mmcnple_pd(__nl28d a, _ ml28d b)

Compares the two DP FP values of a and b for a less than or equal to b.

ro :
rl:

(a0 <= b0) ? Ox
(al <= bl) ? Ox

_ ml28d _mmcnpgt _pd(_ nl28d a, _ nil28d b)
Compares the two DP FP values of a and b for a greater than b.

ro :
rl:

(a0 > b0) ? Ox
(al > bl) ? Ox

0x0
0x0

fEffffffffffffees
fEfffffffffffffef
_ ml28d _mm cnpge_pd(__ nl28d a, _ nil28d b)

Compares the two DP FP values of a and b for a greater than or equal to b.

a0 >= b0) ? Ox

ro:=(
ri:= (al >= bl) ? Ox

fEfffffffeffffffef

fEfffffffffffffef

_ ml28d mmcnpord_pd(__ nl28d a, _ ml28d b)
Compares the two DP FP values of a and b for ordered.

ro :
rl:

(a0 ord b0) ? Ox
(al ord bl) ? Ox

FEFfffff
FEFFFffef

—h —h
—h —h
—h —h
—h —h
—h —h
—h —h
—h —h
—h —h

_ ml28d _mm cnpunord_pd(__ nl28d a, _ nil28d b)

Compares the two DP FP values of a and b for unordered.

ro := (a0 unord b0O) ? Oxffffffffffffffff 0x0

rl := (al unord bl) ? Oxffffffffffffffff 0x0
_ . m28d _nmcnpneq_pd (__ml28d a, __nl28d b)

Compares the two DP FP values of a and b for inequality.

ro := (a0 !'=Db0) ? Oxffffffffffffffff 0x0

rl:=(al !'=Dbl) ? Oxffffffffffffffff 0x0

_ m28d _nmcnpnlt_pd(__nl28d a, _ ml28d b)
Compares the two DP FP values of a and b for a not less than b.

ro :
rl:

(a0 < b0) ? Ox

FEFFFeffffffffees
(al < bl) ? Oxffffffffffffffff

186

_ ml28d _mmcnpnle_pd(__nl28d a, _ ml28d b)
Compares the two DP FP values of a and b for a not less than or equal to b.

ro:=1!(a0 <= b0) ? Oxffffffffffffffff : OxO
ri:=1!(al <= bl) ? Oxffffffffffffffff : OxO

_ ml28d _mmcnpngt _pd(__ml28d a, __ ml28d hb)
Compares the two DP FP values of a and b for a not greater than b.

ro:=1!(a0 > b0) ? Oxffffffffffffffff : OxO
ri:=1(al > bl) ? Oxffffffffffffffff

_ nml28d _mm cnpnge_pd(__ml28d a, __ ml28d hb)
Compares the two DP FP values of a and b for a not greater than or equal to b.

ro :
ril:

(a0 >= b0) ? Oxffffffffffffffff : OxO
l'(al >= bl) ? Oxffffffffffffffff
__nml28d _mm cnpeqg_sd(__nl28d a, _ nl28d b)

Compares the lower DP FP value of a and b for equality. The upper DP FP value is passed
through from a.

ro :
rl:

(a0 == b0) ? Oxffffffffffffffff : OxO
al

_ ml28d mmenplt _sd(_ nl28d a, _ nil28d b)

Compares the lower DP FP value of a and b for a less than b. The upper DP FP value is passed
through from a.

ro :

(a0 < b0) ? Oxffffffffffffffff . OxO
rl =il

_ ml28d mmecnple_sd(_ nl28d a, _ nil28d b)

Compares the lower DP FP value of a and b for a less than or equal to b. The upper DP FP value
is passed through from a.

ro : (a0 <= b0) ? Oxffffffffffffffff : OxO
ri al

_ ml28d _mmcnpgt _sd(__nl28d a, _ nil28d b)

Compares the lower DP FP value of a and b for a greater than b. The upper DP FP value is
passed through from a.

ro :
rl:

(a0 > b0) ? Oxffffffffffffffff . OxO
al

__ ml28d _mm cnpge_sd(__nl28d a, __ nl28d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. The upper DP FP
value is passed through from a.

ro :
rl:

(a0 >= b0) ? Oxffffffffffffffff . OxO
al

187

_ ml28d _mm cnpord_sd(__nl28d a, _ ml28d b)

Compares the lower DP FP value of a and b for ordered. The upper DP FP value is passed
through from a.

ro :
ril:

(a0 ord bO) ? Oxffffffffffffffff : OxO
al

_ ml28d _mm cnpunord_sd(__ml28d a, __ ml28d hb)

Compares the lower DP FP value of a and b for unordered. The upper DP FP value is passed
through from a.

ro :
rl:

0 unord b0O) ? Oxffffffffffffffff : OxO

(a
al
_ ml28d _mm cnpneq_sd(__nl28d a, _ ml28d b)

Compares the lower DP FP value of a and b for inequality. The upper DP FP value is passed
through from a.

ro :
rl:

(a0 !'= b0) ? Oxffffffffffffffff : OxO
al

_ ml28d mmecnpnlt_sd(__nl28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a not less than b. The upper DP FP value is
passed through from a.

ro :
rl:

(a0 < b0O) ? Oxffffffffffffffff : OxO
al

_ ml28d mmcnpnle_sd(__nl28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a not less than or equal to b. The upper DP FP
value is passed through from a.

ro :
rl:

(a0 <= b0) ? Oxffffffffffffffff : OxO
al

_ ml28d _mmcnpngt _sd(__ml28d a, __ ml28d hb)

Compares the lower DP FP value of a and b for a not greater than b. The upper DP FP value is
passed through from a.

ro :
rl:

(a0 > b0) ? Oxffffffffffffffff . OxO
al

__ml28d _mm cnpnge_sd(__ml28d a, __ ml28d hb)

Compares the lower DP FP value of a and b for a not greater than or equal to b. The upper DP FP
value is passed through from a.

ro :
rl:

(a0 >= b0) ? Oxffffffffffffffff : OxO
al

188

i nt

i nt

i nt

i nt

i nt

i nt

i nt

i nt

_mm com eq_sd(__nl28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r .= (a0 == b0) ? Ox1 : OxO

_mmcom It _sd(__ml28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0O is returned.

r := (a0 < b0) ? Ox1 : OxO

_mmcom e _sd(__nl28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or equal
to b, 1 is returned. Otherwise 0 is returned.

r .= (a0 <= b0) ? Ox1 : OxO

_mmcom gt _sd(__nl28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are equal, 1
is returned. Otherwise O is returned.

r := (a0 > b0) ? Ox1 : OxO

_mm com ge_sd(__nl28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than or
equal to b, 1 is returned. Otherwise 0 is returned.

r := (a0 >= b0) ? Ox1 : OxO

_mm conm neq_sd(__nl28d a, __ nml28d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is
returned. Otherwise 0 is returned.

r := (a0 !'= b0) ? Ox1 : OxO

_mm.ucom eq_sd(__nl28d a, __ _nml28d b)

Compares the lower DP FP value of a and b for a equal to b. If a and b are equal, 1 is returned.
Otherwise 0 is returned.

r .= (a0 == b0) ? Ox1 : OxO

_mmucom |t _sd(__nl28d a, __ nml28d b)

Compares the lower DP FP value of a and b for a less than b. If a is less than b, 1 is returned.
Otherwise 0 is returned.

r .= (a0 < b0) ? Ox1 : OxO

189

int _mmuconile sd(__m28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a less than or equal to b. If a is less than or equal
to b, 1 is returned. Otherwise 0 is returned.

r .= (a0 <= b0) ? Ox1 : OxO
int _nmmuconigt _sd(__ml28d a, _ nl28d b)

Compares the lower DP FP value of a and b for a greater than b. If a is greater than b are equal, 1
is returned. Otherwise 0 is returned.

r := (a0 > b0) ? Ox1 : OxO
int _nmuconige sd(__nml28d a, _ ml28d b)

Compares the lower DP FP value of a and b for a greater than or equal to b. If a is greater than or
equal to b, 1 is returned. Otherwise 0 is returned.

r := (a0 >= b0) ? Ox1 : OxO
int _nmucom neq_sd(__ ml28d a, _ nml28d b)

Compares the lower DP FP value of a and b for a not equal to b. If a and b are not equal, 1 is
returned. Otherwise O is returned.

r := (a0 !'= b0) ? Ox1 : OxO

190

Conversion Operations for Streaming SIMD Extensions 2

Each conversion intrinsic takes one data type and performs a conversion to a different type. Some
conversions such as _nm cvt pd_ps result in a loss of precision. The rounding mode used in such cases
is determined by the value in the MXCSR register. The default rounding mode is round-to-nearest. Note
that the rounding mode used by the C and C++ languages when performing a type conversion is to
truncate. The _mm cvttpd_epi 32 and _mm cvtt sd_si 32 intrinsics use the truncate rounding mode
regardless of the mode specified by the MXCSR register.

The conversion-operation intrinsics for Streaming SIMD Extensions 2 are listed in the following table
followed by detailed descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

Intrinsic Corresponding Return Parameters

Name Instruction Type

_mm cvt pd_ps CVTPD2PS 28 (__m28d a)

_mm cvtps_pd CVTPS2PD nl28d (__m28 a)

~mm cvt epi 32_pd CVTDQ2PD nl28d (__m28i a)

_mm cvt pd_epi 32 CVTPD2DQ mL28i (__nl28d a)

mm cvtsd_si 32 CvTSD2SI i nt (__nl28d a)

_mm cvtsd_ss CVTSD2SS nl28 g)__ml28 a, mL28d
_mm cvt si 32_sd CVTSI 2SD ml28d (__nl28d a, int b)
_mm cvt ss_sd CVTSS2SD ml28d E))_ mL28d a, _ nl28
_mm cvttpd _epi 32 CVTTPD2DQ | nl28i (__m28d a)
_mmcvttsd_si 32 CVTTSD2SI i nt (__nl28d a)

_mm cvt pd_pi 32 CVTPD2PI 64 (__nl28d a)

_mm cvttpd _pi 32 CVTTPD2PI 64 (__nl28d a)

_mm cvt pi 32_pd CVTPI 2PD ~ nl28d (__nmb4 a)

191

_ ml28 nmmcvtpd_ps(__m28d a)
Converts the two DP FP values of a to SP FP values.
ro :

rl:
r2 :

(fl oat
(fl oat
0.

_ ml28d _mmcvtps_pd(_ nl28 a)
Converts the lower two SP FP values of a to DP FP values.

ro :
rl:

(doubl e) a0
(doubl e) a1l

_ ml28d _mm cvtepi 32 _pd(__nl28i a)
Converts the lower two signed 32-bit integer values of a to DP FP values.

ro :
rl:

(doubl e) a0
(doubl e) al

_ ml28i _mmcvtpd epi 32(__nl28d a)

Converts the two DP FP values of a to 32-bit signed integer values.

ro := (int) a0
rli:=(int) al
r2 :=0x0 ; r3 := 0x0

int _mmcvtsd_si32(___nl28d a)
Converts the lower DP FP value of a to a 32-bit signed integer value.
r .= (int) a0

_ ml28 mmcvtsd ss(__ml28 a, _ nml28d b)

Converts the lower DP FP value of b to an SP FP value. The upper SP FP values in a are passed

through.
ro:= (float) bO
rl :=al;, r2 :=a2; r3 := a3

_ ml28d _mmcvtsi 32_sd(__nl28d a, int b)

Converts the signed integer value in b to a DP FP value. The upper DP FP value in a is passed
through.

ro := (double) b
rl := al

_ nml28d _mmcvtss_sd(__nl28d a, _ ml28 b)

Converts the lower SP FP value of b to a DP FP value. The upper value DP FP value in a is
passed through.

ro := (double) b0
ril al

192

_ ml28i _mmcvttpd_epi32(__m28d a)

Converts the two DP FP values of a to 32-bit signed integers using truncate.

ro:= (int) a0
rl := (int) al
rz := 0x0; r3 := 0x0

int_mm_cvttsd_si32(__nml28d a)
Converts the lower DP FP value of a to a 32-bit signed integer using truncate.
r :=(int) a0

__n64 _mmcvtpd_pi 32(__nl28d a)
Converts the two DP FP values of a to 32-bit signed integer values.

ro :
ril:

(int) a0
(int) al

__ n64 _mmecevttpd pi 32(__ml28d a)
Converts the two DP FP values of a to 32-bit signed integer values using truncate.

ro:= (int) a0
rl:= (int) al

_ ml28d _nmcvtpi 32_pd(__nmb64 a)
Converts the two 32-bit signed integer values of a to DP FP values.

ro := (double) a0
1 := (double) al

193

Floating-point Memory and Initialization Operations

Streaming SIMD Extensions 2 Floating-point Memory and Initialization
Operations

This section describes the | oad, set, and st or e operations, which let you load and store data into
memory. The | oad and set operations are similar in that both initialize __nl28d data. However, the set
operations take a double argument and are intended for initialization with constants, while the | oad
operations take a double pointer argument and are intended to mimic the instructions for loading data
from memory. The st or e operation assigns the initialized data to the address.

'-F.)Note

There is no intrinsic for move operations. To move data from one register to another, a simple
assignment, A = B, suffices, where A and B are the source and target registers for the move operation.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

Load Operations for Streaming SIMD Extensions 2

The following load operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
_ ml28d nmm | oad_pd(doubl e const*dp)

(uses MOVAPD) Loads two DP FP values. The address p must be 16-byte aligned.

p[O]
p[1]

_ ml28d nmm | oadl pd(doubl e const*dp)

ro :
rl:

(uses MOVSD + shuffling) Loads a single DP FP value, copying to both elements. The address p
need not be 16-byte aligned.

ro :=*p
rl .="*p

__nml28d _mm | oadr _pd(doubl e const*dp)

(uses MOVAPD + shuffling) Loads two DP FP values in reverse order. The address p must be 16-

byte aligned.
ro := p[1]
rl := p[O]

__ml28d _mm | oadu_pd(doubl e const*dp)

(uses MOVUPD) Loads two DP FP values. The address p need not be 16-byte aligned.

p[O]
p[1]

ro :
rl:

194

_ ml28d _mm | oad_sd(doubl e const*dp)

(uses MOVSD) Loads a DP FP value. The upper DP FP is set to zero. The address p need not be
16-byte aligned.

ro:="*p
rl :=0.0

__nml28d _mm | oadh_pd(__nl28d a, doubl e const*dp)

(uses MOVHPD) Loads a DP FP value as the upper DP FP value of the result. The lower DP FP
value is passed through from a. The address p need not be 16-byte aligned.

ro := a0
ri:.=*p

_ ml28d mm |l oadl pd(__nl28d a, double const*dp)

(uses MOVLPD) Loads a DP FP value as the lower DP FP value of the result. The upper DP FP
value is passed through from a. The address p need not be 16-byte aligned.

ro :
rl:

*p
al

Set Operations for Streaming SIMD Extensions 2

The following set operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
_ ml28d _nmm set sd(doubl e w)
(composite) Sets the lower DP FP value to wand sets the upper DP FP value to zero.

ro :=w
rl :=0.0

_ ml28d mm setl pd(double w)
(composite) Sets the 2 DP FP values to w.

ro :
rl:

W
W

_ ml28d _mm set pd(doubl e w, double x)
(composite) Sets the lower DP FP value to x and sets the upper DP FP value to w.

ro :
rl:

X
W

_ ml28d _mm setr_pd(doubl e w, double x)
(composite) Sets the lower DP FP value to wand sets the upper DP FP value to x.

ro :
rl:

W
X

195

_ ml28d _mm setzero_pd(void)

(uses XORPD) Sets the 2 DP FP values to zero.

roO :=0.0
rl :=0.0

_ ml28d _mm nove_sd(_ nl28d a, _ nl28d b)

(uses MOVSD) Sets the lower DP FP value to the lower DP FP value of b. The upper DP FP value is
passed through from a.

Store Operations for Streaming SIMD Extensions 2

The following st or e operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

voi d

voi d

voi d

voi d

voi d

196

_mm store_sd(double *dp, _ nl28d a)

(uses MOVSD) Stores the lower DP FP value of a. The address dp need not be 16-byte aligned.
*dp := a0

_mm storel pd(double *dp, __ nml28d a)

(uses MOVAPD + shuffling) Stores the lower DP FP value of a twice. The address dp must be 16-
byte aligned.

dp[0]
dp[1]

_mm store_pd(double *dp, _ nil28d a)

a0
a0

(uses MOVAPD) Stores two DP FP values. The address dp must be 16-byte aligned.

dp[0]
dp[1]

_mm storeu_pd(double *dp, __ ml28d a)

a0
al

(uses MOVUPD) Stores two DP FP values. The address dp need not be 16-byte aligned.

dp[0]
dp[1]

_mm storer_pd(double *dp, __ ml28d a)

a0
al

(uses MOVAPD + shuffling) Stores two DP FP values in reverse order. The address dp must be 16-
byte aligned.

dp[0] =

al
dp[1] a0

void _mm storeh_pd(double *dp, _ ml28d a)
(uses MOVHPD) Stores the upper DP FP value of a.
*dp := al

void _mmstorel pd(double *dp, _ nil28d a)
(uses MOVLPD) Stores the lower DP FP value of a.
*dp := a0

Miscellaneous Operations for Streaming SIMD Extensions 2

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

__ml28d _mm unpackhi _pd(__ml28d a, __ ml28d hb)
(uses UNPCKHPD) Interleaves the upper DP FP values of a and b.

ro := al
rl := bl

_ ml28d _mm unpackl o_pd(__ml28d a, __ _ml28d hb)
(uses UNPCKLPD) Interleaves the lower DP FP values of a and b.

ro := a0
rl := bo

int _mm novermask _pd(__nl28d a)

(uses MOVMSKPD) Creates a two-bit mask from the sign bits of the two DP FP values of a.

r :=sign(al) << 1 | sign(a0)
_ m28d _mmshuffle_pd(__nl28d a, _ nl28d b, int i)

(uses SHUFPD) Selects two specific DP FP values from a and b, based on the mask i . The mask
must be an immediate. See Macro Function for Shuffle for a description of the shuffle semantics.

197

Integer Intrinsics

Integer Arithmetic Operations for Streaming SIMD Extensions 2

The integer arithmetic operations for Streaming SIMD Extensions 2 are listed in the following table
followed by their descriptions. The packed arithmetic intrinsics for Streaming SIMD Extensions 2 are listed
in the Floating-point Arithmetic Operations topic.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

Intrinsic Instruction Operation
_mm_add_epi8 PADDB Addition
_mm_add_epil6 PADDW Addition
_mm_add_epi32 PADDD Addition
_mm_add_si64 PADDQ Addition
_mm_add_epi64 PADDQ Addition
_mm_adds_epi8 PADDSB Addition
_mm_adds_epil6 PADDSW Addition
_mm_adds_epu8 PADDUSB Addition
_mm_adds_epul6 PADDUSW Addition
_mm_avg_epu8 PAVGB Computes Average
_mm_avg_epul6 PAVGW Computes Average
~mm_madd_epil6 PMADDWD Multiplication/Addition
_mm_max_epil6 PMAXSW Computes Maxima
_mm_max_epu8 PMAXUB Computes Maxima
_mm_min_epil6 PMINSW Computes Minima
_mm_min_epu8 PMINUB Computes Minima
_mm_mulhi_epil6 PMULHW Multiplication
_mm_mulhi_epul6 PMULHUW Multiplication
_mm_mullo_epil6 PMULLW Multiplication
_mm_mul_su32 PMULUDQ Multiplication

198

Intrinsic Instruction Operation
_mm_mul_epu32 PMULUDQ Multiplication
_mm_sad_epu8 PSADBW gicf)?e]ﬁ)eurfgtse/Adds
_mm_sub_epi8 PSUBB Subtraction
_mm_sub_epil6 PSUBW Subtraction
_mm_sub_epi32 PSUBD Subtraction
_mm_sub_si64 PSUBQ Subtraction
_mm_sub_epi64 PSUBQ Subtraction
_mm_subs_epi8 PSUBSB Subtraction
_mm_subs_epil6 PSUBSW Subtraction
_mm_subs_epu8 PSUBUSB Subtraction
_mm_subs_epul6 PSUBUSW Subtraction

_ mml28i _mm add_epi 8(__ml28i a, __ ml28i

b)

Adds the 16 signed or unsigned 8-bit integers in a to the 16 signed or unsigned 8-bit integers in b.

ro :
rl:

r15 := al5 + bi5

a0 + b0
al + bl

_ mml28i _mm add_epi 16(__ml28i a, __ nil28i

b)

Adds the 8 signed or unsigned 16-bit integers in a to the 8 signed or unsigned 16-bit integers in b.

ro := a0 + b0
rl :=al + bl
.r.7.:: a7 + b7

_ ml28i _nmm add_epi 32(__ml28i a, __ ml28i

b)

Adds the 4 signed or unsigned 32-bit integers in a to the 4 signed or unsigned 32-bit integers in b.

ro .= a0
rl :=al
r2 .= a2
r3 := a3

=+
+
=+
+

b0
bl
b2
b3

199

__mB64 mm add_si64(__nb4 a, _ _nb4 b)
Adds the signed or unsigned 64-bit integer a to the signed or unsigned 64-bit integer b.
r:=a+b

_ ml28i _mm add_epi 64(__nl28i a, __ _ml28i b)
Adds the 2 signed or unsigned 64-bit integers in a to the 2 signed or unsigned 64-bit integers in b.

ro :
rl:

a0 + b0
al + bl

_ ml28i _mm adds_epi 8(__nl28i a, _ ml28i b)

Adds the 16 signed 8-bit integers in a to the 16 signed 8-bit integers in b using saturating
arithmetic.

roO := SignedSaturate(a0 + bO0)
rl := SignedSaturate(al + bl)
r1

5 .= SignedSaturate(al5 + blb)
_ ml28i _nmm adds_epi 16(__ml28i a, _ ml28i b)

Adds the 8 signed 16-bit integers in a to the 8 signed 16-bit integers in b using saturating
arithmetic.

ro :
ril:

Si gnedSat urate(a0 + b0)
Si gnedSaturate(al + bl)

r7 := Si gnhedSat urate(a7 + b7)
_ ml28i _nmm adds_epu8(__nl28i a, _ ml28i b)

Adds the 16 unsigned 8-bit integers in a to the 16 unsigned 8-bit integers in b using saturating
arithmetic.

rO := UnsignedSaturate(a0 + b0)
rl := UnsignedSaturate(al + bl)

ri5 := Unsi gnedSat urat e(al5 + blb)
_ ml28i _nm adds_epul6(__nl28i a, __nl28i b)

Adds the 8 unsigned 16-bit integers in a to the 8 unsigned 16-bit integers in b using saturating
arithmetic.

rO := UnsignedSaturate(a0 + b0)
rl := UnsignedSaturate(al + bl)

ri5 := Unsi gnedSaturate(a7 + b7)
__ml28i _mm avg_epu8(__nl28i a, __ ml28i b)

Computes the average of the 16 unsigned 8-bit integers in a and the 16 unsigned 8-bit integers in
b and rounds.

ro :
rl:

(a0 + b0O) / 2
(al + bl) / 2

ri5 := (als5 + bls) / 2

200

_ ml28i _mm avg_epul6(__nl28i a, _ ml28i b)

Computes the average of the 8 unsigned 16-bit integers in a and the 8 unsigned 16-bit integers in
b and rounds.

ro := (a0 + b0) / 2
rl:=(al + bl) / 2
r7 := (a7 + b7) | 2

_ ml28i _nmm nmedd_epi 16(__ml28i a, _ ml28i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. Adds the
signed 32-bit integer results pairwise and packs the 4 signed 32-bit integer results.

ro := (a0 * b0) + (al * bil)
rl:= (a2 * b2) + (a3 * b3)
r2 := (a4 * b4) + (ab * bb)
r3 := (a6 * b6) + (a7 * b7)

_ ml28i _mm nmex_epi 16(__nl28i a, _ ml28i b)

Computes the pairwise maxima of the 8 signed 16-bit integers from a and the 8 signed 16-bit
integers from b.

ro := max(a0, b0)
ri := max(al, bl)
r7 = max(a7, b7)

_ ml28i _mm nmax_epu8(_ nl28i a, _ nl28i h)

Computes the pairwise maxima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit
integers from b.

ro :
rl:

max(a0, b0)
max(al, bl)

ri5 : = max(al5, blb)

_ ml28i _mmmin_epi 16(__ml28i a, __ ml28i b)

Computes the pairwise minima of the 8 signed 16-bit integers from a and the 8 signed 16-bit
integers from b.

ro :
rl:

m n(a0, b0O)
mn(al, bil)

r7 := nin(a7, b7)

_ ml28i _mmmn_epu8(__nl28i a, __ nml28i b)

Computes the pairwise minima of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-bit
integers from b.

ro :
rl:

m n(a0, bO)
mn(al, bl)

ri5 : = mn(al5, bil5)

201

_ ml28i _mm mul hi _epi 16(__nl28i a, _ nl28i b)

Multiplies the 8 signed 16-bit integers from a by the 8 signed 16-bit integers from b. Packs the
upper 16-bits of the 8 signed 32-bit results.

r0 := (a0 * b0)[31:16]
rl := (al * bl)[31:16]
r7 1= (a7 * b7)[31: 16]

_ ml28i _mmmul hi _epul6(__ml28i a, __ ml28i h)

Multiplies the 8 unsigned 16-bit integers from a by the 8 unsigned 16-bit integers from b. Packs the
upper 16-bits of the 8 unsigned 32-bit results.

r0 := (a0 * b0)[31:16]
rl := (al * bl)[31:16]
r7 := (a7 * b7)[31: 16]

_ ml28i _mmnull o _epi 16(__ml28i a, _ ml28i b)

Multiplies the 8 signed or unsigned 16-bit integers from a by the 8 signed or unsigned 16-bit
integers from b. Packs the lower 16-bits of the 8 signed or unsigned 32-bit results.

ro := (a0 * b0)[15:0]
rl:= (al * bl)[15:0]
r7 := (a7 * b7)[15: 0]

_mb4 _mmnmul _su32(__nb4 a, _ nb4 b)

Multiplies the lower 32-bit integer from a by the lower 32-bit integer from b, and returns the 64-bit
integer result.

r := a0 * b0
_ ml28i _mmmul _epu32(__ nl28i a, _ ml28i b)

Multiplies 2 unsigned 32-bit integers from a by 2 unsigned 32-bit integers from b. Packs the 2
unsigned 64-bit integer results.

a0 * bO

ro :
ri a2 * b2

_ ml28i _mmsad_epu8(__nl28i a, _ nl28i b)

Computes the absolute difference of the 16 unsigned 8-bit integers from a and the 16 unsigned 8-
bit integers from b. Sums the upper 8 differences and lower 8 differences, and packs the resulting
2 unsigned 16-bit integers into the upper and lower 64-bit elements.

ro := abs(a0 - b0) + abs(al - bl) +...+ abs(a7 - b7)
r1 :=0x0; r2 :=0x0; r3 := 0x0

r4 := abs(a8 - b8) + abs(a9 - b9) +...+ abs(al5 - blb)
r5 :=0x0; r6 :=0x0; r7 := 0x0

202

_ ml28i _mmsub_epi8(__nl28i a, _ nl28i b)

Subtracts the 16 signed or unsigned 8-bit integers of b from the 16 signed or unsigned 8-bit
integers of a.

ro := a0 - bo
rl :=al - bl

r15 := al5 - bl5
__ ml28i _mm sub_epi 16(__nl28i a, __ nml28i b)

Subtracts the 8 signed or unsigned 16-bit integers of b from the 8 signed or unsigned 16-bit
integers of a.

ro := a0 - bo
rl :=al - bl
r7 := a7 - b7

_ ml28i _nmm sub_epi 32(__nl28i a, _ ml28i b)

Subtracts the 4 signed or unsigned 32-bit integers of b from the 4 signed or unsigned 32-bit
integers of a.

ro := a0 - bo
rl :=al - bl
r2 := a2 - b2
r3 := a3 - b3

__mb4 mmsub_si64 (__nb4 a, _ nbB4 b)
Subtracts the signed or unsigned 64-bit integer b from the signed or unsigned 64-bit integer a.
r:=a-m=o

_ ml28i _nmm sub_epi 64(__nl28i a, _ ml28i b)

Subtracts the 2 signed or unsigned 64-bit integers in b from the 2 signed or unsigned 64-bit

integers in a.
ro := a0 - b0
ri:=al - bl

_ ml28i _nmm subs_epi 8(__nl28i a, _ ml28i b)

Subtracts the 16 signed 8-bit integers of b from the 16 signed 8-bit integers of a using saturating
arithmetic.

rO := SignedSaturate(a0 - b0)
rl := SignedSaturate(al - bl)
ri

5 := SignedSaturate(al5 - blb)

203

_ ml28i _mm subs_epi 16(__ml28i a, _ ml28i b)

Subtracts the 8 signed 16-bit integers of b from the 8 signed 16-bit integers of a using saturating

arithmetic.

ro := SignedSaturate(a0 - bO)
rl := SignedSaturate(al - bl)
r7 .= Si gnedSat urate(a7 - b7)

_ ml28i _mm subs_epu8(__nl28i a, _ ml28i b)

Subtracts the 16 unsigned 8-bit integers of b from the 16 unsigned 8-bit integers of a using
saturating arithmetic.

ro :
rl:

Unsi gnedSat urate(a0 - b0)
Unsi gnedSat urate(al - bl)

ri5 := Unsi gnedSat urat e(al5 - blb)
_ ml28i _nmm subs_epul6(__ml28i a, _ ml28i b)

Subtracts the 8 unsigned 16-bit integers of b from the 8 unsigned 16-bit integers of a using
saturating arithmetic.

rO := UnsignedSaturate(a0 - bO)
rl := UnsignedSaturate(al - bl)
r7 := Unsi gnedSat urate(a7 - b7)

204

Integer Logical Operations for Streaming SIMD Extensions 2

The following four logical-operation intrinsics and their respective instructions are functional as part of
Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

__ ml28i _mm and_si 128(_ ml28i

__ml28i b)

(uses PAND) Computes the bitwise AND of the 128-bit value in a and the 128-bit value in b.

r.=aé&hb
_ ml28i _mm andnot _si 128(__ nl28i

_ mL28i

b)

(uses PANDN) Computes the bitwise AND of the 128-bit value in b and the bitwise NOT of the 128-

bit value in a.
r.=(~a) &b
_ ml28i _mmor_si128(__ nl28i

b)

(uses POR) Computes the bitwise OR of the 128-bit value in a and the 128-bit value in b.

r:=a |

_ ml28i _mm xor _si 128(__ml28i

__ml28i b)

(uses PXOR) Computes the bitwise XOR of the 128-bit value in a and the 128-bit value in b.

r :=an

Integer Shift Operations for Streaming SIMD Extensions 2

The shift-operation intrinsics for Streaming SIMD Extensions 2 and the description for each are listed in

the following table.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

Intrinsic Shift Shift Corresponding
Direction Type Instruction

_mm_slli_si128 Left Logical PSLLDQ
~mm_slli_epil6 Left Logical PSLLW
_mm_sll_epil6 Left Logical PSLLW
~mm_slli_epi32 Left Logical PSLLD
_mm_sll_epi32 Left Logical PSLLD
_mm_slli_epi64 Left Logical PSLLQ
_mm_sll_epi64 Left Logical PSLLQ
_mm_srai_epil6 Right Arithmetic PSRAW

205

Intrinsic Shift Shift Corresponding
Direction Type Instruction
_mm_sra_epil6 Right Arithmetic PSRAW
_mm_srai_epi32 Right Arithmetic PSRAD
_mm_sra_epi32 Right Arithmetic PSRAD
_mm_srli_si128 Right Logical PSRLDQ
_mm_srli_epil6 Right Logical PSRLW
_mm_srl_epil6 Right Logical PSRLW
_mm_srli_epi32 Right Logical PSRLD
_mm_srl_epi32 Right Logical PSRLD
_mm_srli_epi64 Right Logical PSRLQ
_mm_srl_epi64 Right Logical PSRLQ
_ ml28i _mmslli_sil128(__nl28i a, int inmm

Shifts the 128-bit value in a left by i nmbytes while shifting in zeros. i mmmust be an immediate.

r:=a<< (inm* 8)

_ ml28i _mmslli_epi16(__nl28i

a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.

ro :
rl:

(7

_ ml28i _mmsl| _epi 16(___nl28i

a0 << count
al << count

a7 << count

a, _ ml28i count)

Shifts the 8 signed or unsigned 16-bit integers in a left by count bits while shifting in zeros.

ro :
rl:

(7

_ ml28i _mmslli_epi32(__ml28i

a0 << count
al << count

a7 << count

a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.

ro .= a0
rl :=al
r2 .= a2
r3 .= a3

206

<<
<<
<<
<<

count
count
count
count

_ ml28i _mmsll _epi32(__nl28i a, __ml28i count)

Shifts the 4 signed or unsigned 32-bit integers in a left by count bits while shifting in zeros.

ro := a0 << count
rl := al << count
r2 := a2 << count
r3 := a3 << count

_ m28i _mmslli_epi64(__m28i a, int count)
Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.

ro := a0 << count
rl := al << count

_ ml28i _mmsll _epi64(__nl28i a, __ml28i count)
Shifts the 2 signed or unsigned 64-bit integers in a left by count bits while shifting in zeros.

= a0 << count
= al << count

_ ml28i _mmsrai_epi16(__ml28i a, int count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.

ro := a0 >> count
rl := al >> count
f?.:: a7 >> count

_ ml28i _mmsra_ epi 16(__nl28i a, __ ml28i count)

Shifts the 8 signed 16-bit integers in a right by count bits while shifting in the sign bit.

ro := a0 >> count
rl := al >> count
}?':: a7 >> count

_ ml28i _nmmsrai_epi32(__nl28i a, int count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the sign bit.

ro := a0 >> count
rl := al >> count
r2 .= a2 >> count
r3 .= a3 >> count

_ ml28i _mmsra_epi 32(__ml28i a, __ _ml28i count)

Shifts the 4 signed 32-bit integers in a right by count bits while shifting in the sign bit.

rO := a0 >> count
rl := al >> count
r2 := a2 >> count
r3 := i3 >> count

207

_ ml28i _mmsrli_sil128(__ ml28i a, int inm
Shifts the 128-bit value in a right by i mmbytes while shifting in zeros. i mmmust be an immediate.
r :=srl(a, im¥r8)

_ ml28i _mmsrli_epil16(__m28i a, int count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.

ro := srl (a0, count)
rl := srl(al, count)
r7 = srl (a7, count)

_ ml28i _mmsrl _epi1l6(__nl28i a, __ ml28i count)

Shifts the 8 signed or unsigned 16-bit integers in a right by count bits while shifting in zeros.

ro := srl (a0, count)
rl := srl(al, count)
r7 = srl (a7, count)

_ ml28i _mmsrli_epi32(__ml28i a, int count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.

ro := srl (a0, count)
rl := srl(al, count)
r2 := srl(a2, count)
r3 :=srl (a3, count)

_ ml28i _mmsrl_epi32(__nl28i a, __ml28i count)

Shifts the 4 signed or unsigned 32-bit integers in a right by count bits while shifting in zeros.

ro := srl (a0, count)
rl := srl(al, count)
r2 :=srl (a2, count)
r3 := srl (a3, count)

_ ml28i _mmsrli_epi64(__nl28i a, int count)
Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.

ro :
rl:

srl (a0, count)
srl(al, count)

_ ml28i _mmsrl_epi 64(__ml28i a, __ _ml28i count)
Shifts the 2 signed or unsigned 64-bit integers in a right by count bits while shifting in zeros.

ro :
rl:

srl (a0, count)
srl(al, count)

208

Integer Comparison Operations for Streaming SIMD Extensions 2

The comparison intrinsics for Streaming SIMD Extensions 2 and descriptions for each are listed in the

following table.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

Intrinsic Name Instruction Comparison Elements Size of
Elements
_mm_cmpeq_epi8 PCMPEQB Equality 16 8
_mm_cmpeq_epilé PCMPEQW Equality 8 16
_mm_cmpeq_epi32 PCMPEQD Equality 4 32
_mm_cmpgt_epi8 PCMPGTB Greater Than 16 8
_mm_cmpgt_epil6 PCMPGTW Greater Than 8 16
_mm_cmpgt_epi32 PCMPGTD Greater Than 4 32
_mm_cmplt_epi8 PCMPGTBr Less Than 16 8
_mm_cmplt_epil6 PCMPGTWr Less Than 8 16
_mm_cmplt_epi32 PCMPGTDr Less Than 4 32
_ ml28i _mmcnpeq_epi 8(__ml28i a, _ ml28i b)

Compares the 16 signed or unsigned 8-bit integers in a and the 16 signed or unsigned 8-bit
integers in b for equality.

ro := (a0 == b0) ? Oxff 0x0
ri:= (al == bl) ? Oxff 0x0
ri5 := (al5 == b15) ? Oxff : OxO
_ ml28i _mm cnpeq_epi 16(__nl28i a, _ nl28i hb)

Compares the 8 signed or unsigned 16-bit integers in a and the 8 signed or unsigned 16-bit
integers in b for equality.

ro := (a0 == b0) ? Oxffff 0x0
ri:=(al == bl) ? Oxffff 0x0
r7 := (a7 == b7) ? Oxffff : OxO

__ml28i _mm cnpeqg_epi 32(__ml28i a, __ml28i hb)

Compares the 4 signed or unsigned 32-bit integers in a and the 4 signed or unsigned 32-bit
integers in b for equality.

r0 := (a0 == b0) ? Oxffffffff : OxO
r1 .= (al == bl) ? Oxffffffff : 0xO
r2 .= (a2 == b2) ? Oxffffffff : OxO
r3 := (a3 == b3) ? Oxffffffff : OxO

209

_ ml28i _mmcnpgt_epi 8(__ml28i a, _ ml28i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for greater than.

ro :
ril:

(a0 > b0) ? Oxff : OxO
(al > bl) ? Oxff : 0OxO

ri5 ;= (al5 > bls) ? oxff : 0xO

_ ml28i _mmcnpgt _epi 16(__ nl28i a, _ nl28i h)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for greater than.

ro := (a0 > b0) ? Oxffff 0x0
r1:= (al > bl) ? Oxffff : OxO
r7 := (a7 > b7) ? Oxffff : Ox0

_ ml28i _mmcnpgt _epi 32(__nl28i a, _ ml28i b)

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for greater than.

ro := (a0 > b0) ? Oxffff 0x0
rl :=(al > bl) ? Oxffff 0x0
r2 := (a2 > b2) ? Oxffff 0x0
r3 := (a3 > b3) ? Oxffff 0x0

_ nml28i _mmecnplt_epi8(__nml28i a, _ ml28i b)

Compares the 16 signed 8-bit integers in a and the 16 signed 8-bit integers in b for less than.

ro :
rl:

(a0 < b0O) ? Oxff : OxO
(al < bl) ? Oxff : 0OxO

ri5 := (al5 < bl5) ? Oxff : 0x0

_ nml28i _mmecnplt_epi 16(_ ml28i a, _ ml28i b)

Compares the 8 signed 16-bit integers in a and the 8 signed 16-bit integers in b for less than.

ro := (a0 < b0) ? Oxffff : OxO
rl:=(al < bl) ? Oxffff : OxO
r7 := (a7 < b7) ? Oxffff : OxO

_ m28i _mmecnplt_epi32(__nl28i a, _ ml28i b)

210

Compares the 4 signed 32-bit integers in a and the 4 signed 32-bit integers in b for less than.

ro := (a0 < b0) ? Oxffff 0x0
rl:= (al < bl) ? Oxffff 0x0
r2 := (a2 < bh2) ? Oxffff 0x0
r3 := (a3 < b3) ? Oxffff 0x0

Conversion Operations for Streaming SIMD Extensions 2

The following two conversion intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
_ ml28i _mmcvtsi 32 _si128(int a)

(uses MOVD) Moves 32-bit integer a to the least significant 32 bits of an __ml28i object. Copies
the sign bit of a into the upper 96 bits of the _ nll28i object.

ro :
rl:

a
Ox0 ; r2 := 0x0 ; r3 := 0x0

int mmecvtsi 128 si 32(__nml28i a)
(uses MOVD) Moves the least significant 32 bits of a to a 32 bit integer.
r := a0

_ nml28 _mm cvtepi 32_ps(__nl28i a)

Converts the 4 signed 32-bit integer values of a to SP FP values.

ro := (float) a0
rl := (float) al
r2 := (float) a2
r3 := (float) a3

_ ml28i _mmcvtps_epi 32(__nl28 a)

Converts the 4 SP FP values of a to signed 32-bit integer values.

ro := (int) a0
rli:=(int) al
r2 := (int) a2
r3 :=(int) a3

_ ml28i _mmcvttps_epi 32(__nl28 a)

Converts the 4 SP FP values of a to signed 32 bit integer values using truncate.

ro := (int) a0
ri:=(int) al
r2 :=(int) a2
r3 := (int) a3

211

Macro Function for Shuffle

The Streaming SIMD Extensions 2 provide a macro function to help create constants that describe shuffle
operations. The macro takes two small integers (in the range of 0 to 1) and combines them into an 2-bit
immediate value used by the SHUFPD instruction. See the following example.

Shuffle Function Macro

_MM_SHFFLES (=,)

expands to the vahie of
[wc1) |

You can view the two integers as selectors for choosing which two words from the first input operand and
which two words from the second are to be put into the result word.

View of Original and Result Words with Shuffle Function Macro

- i e A

Gl v G

md = _we_rhoffle_pdiml, mi, MM SHUFFLE: (1,0)

sm2 o= 127 i
mé & [

b P

Cacheability Support Operations for Streaming SIMD Extensions 2

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
void _nm stream pd(double *p, _ ml28d a)

(uses MOVNTPD) Stores the data in a to the address p without polluting caches. The address p
must be 16-byte aligned. If the cache line containing address p is already in the cache, the cache
will be updated.

a0

p[O]
p[1] al

void nmstreamsi128(__ nl28i *p, _ ml28i a)

Stores the data in a to the address p without polluting the caches. If the cache line containing
address p is already in the cache, the cache will be updated. Address p must be 16-byte aligned.

*p = a
void _mmstreamsi32(int *p, int a)

Stores the data in a to the address p without polluting the caches. If the cache line containing
address p is already in the cache, the cache will be updated.

*pi=a

212

void _mmcl flush(void const*p)
Cache line containing p is flushed and invalidated from all caches in the coherency domain.
void mm|fence(void)

Guarantees that every load instruction that precedes, in program order, the load fence instructio
globally visible before any load instruction which follows the fence in program order.

void _nm nfence(void)

Guarantees that every memory access that precedes, in program order, the memory fence
instruction is globally visible before any memory instruction which follows the fence in program
order.

voi d _nm pause(voi d)

The execution of the next instruction is delayed an implementation specific amount of time. The
instruction does not modify the architectural state. This intrinsic provides especially significant
performance gain and described in more detail below.

PAUSE Intrinsic

The PAUSE intrinsic is used in spin-wait loops with the processors implementing dynamic execution
(especially out-of-order execution). In the spin-wait loop, PAUSE improves the speed at which the code
detects the release of the lock. For dynamic scheduling, the PAUSE instruction reduces the penalty of
exiting from the spin-loop.

Example of loop with the PAUSE instruction:

spin_loop:pause

cmp eax, A

jne spin_loop

In the above example, the program spins until memory location A matches the value in register eax. T

nis

he

code sequence that follows shows a test-and-test-and-set. In this example, the spin occurs only after the

attempt to get a lock has failed.
get_lock: mov eax, 1

xchg eax, A ; Try to get lock
cmp eax, 0 ; Test if successful
jne spin_loop

<critical_section code>

nov A, O ; Release |ock
jmp continue

spin_loop: pause ; Spin-loop hint
cmp 0, A ; Check lock availability

jne spin_loop

213

jmp get_lock

continue: <other code>

Note that the first branch is predicted to fall-through to the critical section in anticipation of successfully
gaining access to the lock. It is highly recommended that all spin-wait loops include the PAUSE instruction.
Since PAUSE is backwards compatible to all existing 1A-32 processor generations, a test for processor
type (a CPUI Dtest) is not needed. All legacy processors will execute PAUSE as a NOP, but in processors
which use the PAUSE as a hint there can be significant performance benefit.

Miscellaneous Operations for Streaming SIMD Extensions 2

The miscellaneous intrinsics for Streaming SIMD Extensions 2 are listed in the following table followed by

their descriptions.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

Intrinsic Corresponding Operation
Instruction
_mm_packs_epil6 PACKSSWB Packed Saturation
_mm_packs_epi32 PACKSSDW Packed Saturation
_mm_packus_epil6 PACKUSWB Packed Saturation
_mm_extract_epil6 PEXTRW Extraction
_mm_insert_epil6 PINSRW Insertion
_mm_movemask_epi8 PMOVMSKB Mask Creation
_mm_shuffle_epi32 PSHUFD Shuffle
_mm_shufflehi_epil6 PSHUFHW Shuffle
_mm_shufflelo_epil6 PSHUFLW Shuffle
_mm_unpackhi_epi8 PUNPCKHBW Interleave
_mm_unpackhi_epil6 PUNPCKHWD Interleave
_mm_unpackhi_epi32 PUNPCKHDQ Interleave
_mm_unpackhi_epi64 PUNPCKHQDQ Interleave
_mm_unpacklo_epi8 PUNPCKLBW Interleave
_mm_unpacklo_epil6 PUNPCKLWD Interleave
_mm_unpacklo_epi32 PUNPCKLDQ Interleave
_mm_unpacklo_epic4 PUNPCKLQDQ Interleave
_mm_movepi64_pi64 MOVDQ2Q move

214

Intrinsic Corresponding Operation
Instruction

~m128i_ mm_movpi64_epi6d MOVQ2DQ move

_mm_move_epi64d MOVQ move

_ ml28i _nmm packs_epi 16(__nl28i a, _ nl28i h)

Packs the 16 signed 16-bit integers from a and b into 8-bit integers and saturates.

rO : = SignedSat urate(a0)
rl := SignedSaturate(al)
r7 .= Si gnedSat ur at e(a7)
r8 := SignedSaturate(b0)
r9 := SignedSaturate(bl)

ri5 := Si gnedSat ur at e(b7)
_ ml28i _mm packs_epi 32(__nll28i a, _ nl28i h)

Packs the 8 signed 32-bit integers from a and b into signed 16-bit integers and saturates.

rO : = SignedSat urate(a0)
rl := SignedSaturate(al)
r2 := SignedSaturate(a2)
r3 := SignedSaturate(a3)
r4 := SignedSaturate(b0)
r5 := SignedSaturate(bl)
ré := SignedSaturate(b2)
r7 := SignedSaturate(b3)

_ nml28i _mm packus_epi 16(__ml28i a, _ ml28i b)

Packs the 16 signed 16-bit integers from a and b into 8-bit unsigned integers and saturates.

rO : = Unsi gnedSat urat e(a0)
ri := UnsignedSaturate(al)
r7 := Unsi gnedSat ur at e(a7)
r8 : = UnsignedSaturate(b0)
r9 : = UnsignedSaturate(bl)

ri5 := Unsi gnedSat ur at e(b7)
int _mmextract_epi 16(__nl28i a, int inmm

Extracts the selected signed or unsigned 16-bit integer from a and zero extends. The selector i mm
must be an immediate.

r .= (imm==0) ? a0 :
((inm==1) ? al :

(inm==7) 2 a7)

215

_ ml28i _mminsert_epil6(__m28i a, int b, int imm

Inserts the least significant 16 bits of b into the selected 16-bit integer of a. The selector i nmmust
be an immediate.

ro:= (inm==20) ? b : a0;
rl:=(imm==1) ? b : ai,
'r'7'::(irrm::7)?b: ar7;

int _mm novermask _epi 8(__nml28i a)

Creates a 16-bit mask from the most significant bits of the 16 signed or unsigned 8-bit integers in a
and zero extends the upper bits.

r := alb5[7] << 15 |
ala[7] << 14 |

éit?] << 1 |
ao[7]
_ ml28i _mmshuffle_epi 32(__ml28i a, int inm

Shuffles the 4 signed or unsigned 32-bit integers in a as specified by i nm The shuffle value, i nm
must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

_ ml28i _mm shufflehi _epi1l6(__ml28i a, int inm

Shuffles the upper 4 signed or unsigned 16-bit integers in a as specified by i nrm The shuffle value,
i mm must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

_ ml28i _mmshufflelo_epi16(__m28i a, int im

Shuffles the lower 4 signed or unsigned 16-bit integers in a as specified by i nrm The shuffle value,
i mm must be an immediate. See Macro Function for Shuffle for a description of shuffle semantics.

_ ml28i _mm unpackhi _epi 8(__ml28i a, _ nml28i b)

Interleaves the upper 8 signed or unsigned 8-bit integers in a with the upper 8 signed or unsigned
8-bit integers in b.

b8
b9

ro :
r2 :

a8 ; r1 :
a9 ; r3:

ri4 := als ; rl5 = bil5
_ ml28i _mm unpackhi _epi 16(__nl28i a, _ ml28i b)

Interleaves the upper 4 signed or unsigned 16-bit integers in a with the upper 4 signed or unsigned
16-bit integers in b.

ro :=a4 ; rl := b4
r2 := a5 ; r3 :=bb
r4 := a6 ; r5 := b6
ré := a7 ; r7 := b7

216

_ ml28i _mm unpackhi _epi 32(__nl28i a, __ ml28i b)

Interleaves the upper 2 signed or unsigned 32-bit integers in a with the upper 2 signed or unsigned
32-bit integers in b.

b2

a2 ; rl:
a b3

3 r3:

__ml28i _mm unpackhi _epi 64(__nl28i a, _ nml28i b)

Interleaves the upper signed or unsigned 64-bit integer in a with the upper signed or unsigned 64-
bit integer in b.

ro :=al; rl :=Dbl
__ml28i _mm unpackl o_epi 8(__ml28i a, __ ml28i h)

Interleaves the lower 8 signed or unsigned 8-bit integers in a with the lower 8 signed or unsigned
8-bit integers in b.

ro :
r2 :

b0
bl

a0 ; r1 :
al ; r3:

ri4 := a7 ; rl5 1= b7
__ml28i _mm unpackl o_epi 16(__nl28i a, __ nml28i b)

Interleaves the lower 4 signed or unsigned 16-bit integers in a with the lower 4 signed or unsigned
16-bit integers in b.

ro :=a0 ; r1 := b0
r2 :=al; r3 := bl
r4 := a2 ; r5 := b2
ré := a3 ; r7 := b3

_ ml28i _mm unpackl o_epi 32(__nl28i a, _ ml28i b)

Interleaves the lower 2 signed or unsigned 32-bit integers in a with the lower 2 signed or unsigned
32-bit integers in b.

ro :
r2 .

a0 ; r1 :
al ; r3:

b0
bl

__ml28i _mm unpackl o_epi 64(__nl28i a, __ nml28i b)

Interleaves the lower signed or unsigned 64-bit integer in a with the lower signed or unsigned 64-
bit integer in b.

ro:= a0 ; rl := b0
__ b4 _mm novepi 64 _pi 64(__ nml28i a)
Returns the lower 64 bits of a as an __n64 type.

ro .= a0l ;

217

_128i _nm novpi 64_pi 64(__nb4 a)
Moves the 64 bits of a to the lower 64 bits of the result, zeroing the upper bits.
ro:=ao0; rl1 := 0X0 ;

1281 _mm nove_epi 64(__128i a)
Moves the lower 64 bits of the lower 64 bits of the result, zeroing the upper bits.
ro:=ao0; rl1 := 0X0 ;

Integer Memory and Initialization Operations

Streaming SIMD Extensions 2 Integer Memory and Initialization

The integer | oad, set, and st or e intrinsics and their respective instructions provide memory and
initialization operations for the Streaming SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
* Load Operations
* Set Operations

* Store Operations

Integer Load Operations for Streaming SIMD Extensions 2

The following | oad operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
_ ml28i _nmm | oad_si 128(__nl28i const*p)
(uses MOVDQA) Loads 128-bit value. Address p must be 16-byte aligned.
r:=>*p
_ ml28i _nmm | oadu_si 128(__ml28i const*p)
(uses MOVDQU) Loads 128-bit value. Address p not need be 16-byte aligned.
r:=>*p
__ml28i _mm | oadl _epi 64(__ml28i const*p)

(uses MOVQ) Load the lower 64 bits of the value pointed to by p into the lower 64 bits of the result,
zeroing the upper 64 bits of the result.

ro:. = *p[63: 0]
ril:=0x0

218

Integer Set Operations for Streaming SIMD Extensions 2

The following set operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.
_ nml28i _mm set _epi 64(__n64 gl, _ b4 q0)

Sets the 2 64-bit integer values.

_ ml28i _mmset _epi32(int i3, int i2, int il, int i0)
Sets the 4 signed 32-bit integer values.

ro :
rl:
r2 :
r3 :

WNEFLO

__ ml28i _mm set _epi 16(short w7, short w6, short ws, short w4, short w3, short
w2, short wl, short w0)

Sets the 8 signed 16-bit integer values.

ro :=w
rli :=wl
.r.7.::w7

_ ml28i _mm set _epi 8(char bl5, char bl4, char bl3, char bl2, char bll, char
b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3, char b2,
char b1, char b0)

Sets the 16 signed 8-bit integer values.

b0
bl

[—

0

1:

r15 := bis

_ ml28i _mmsetl epi64(__nb4 Qq)
Sets the 2 64-bit integer values to g.

ro :
ri

q
q
_ ml28i _mmsetl epi32(int i)

Sets the 4 signed 32-bit integer values toi .

===
WN RO

219

_ ml28i _mmsetl epil16(short w)

Sets the 8 signed 16-bit integer values to w.

ro :=w
ri:=w
r7 = w

_ ml28i _mm setl epi 8(char b)

Sets the 16 signed 8-bit integer values to b.
b
b

ro
rl
r15 := b

_ ml28i _mmsetr_epi 64(__nm64 q0, _ nb64 ql)

Sets the 2 64-bit integer values in reverse order.

_ ml28i _mmsetr_epi32(int i0, int il, int i2, int i3)

Sets the 4 signed 32-bit integer values in reverse order.

== = =
WN RO
WN RO

_ ml28i _mmsetr_epi 16(short w0, short wl, short w2, short w3, short w4, short
wh, short w6, short wr)

Sets the 8 signed 16-bit integer values in reverse order.

w0
wil

ro
ri:
r7 =W/
__ ml28i _mm setr_epi 8(char bl5, char bl4, char bl3, char bl2, char bll, char
b10, char b9, char b8, char b7, char b6, char b5, char b4, char b3, char b2,
char b1, char b0)

Sets the 16 signed 8-bit integer values in reverse order.

b0
bl

[—

0

1

r15 := bl5

__ml28i _mm setzero_si 128()
Sets the 128-bit value to zero.

r:=0x0

220

Integer Store Operations for Streaming SIMD Extensions 2

The following st or e operation intrinsics and their respective instructions are functional in the Streaming
SIMD Extensions 2.

The prototypes for Streaming SIMD Extensions 2 intrinsics are in the emmi nt ri n. h header file.

voi d

voi d

voi d

voi d

_mmstore_si128(__ml28i *p, _ ml28i b)

(uses MOVDQA) Stores 128-bit value. Address p must be 16 byte aligned.

*p = a

_mmstoreu_si 128(__nl28i *p, _ nl28i b)

(uses MOVDQU) Stores 128-bit value. Address p need not be 16-byte aligned.
*pr=a

_mm nmasknoveu_si 128(__ ml28i d, _ ml28i n, char *p)

(uses MASKMOVDQU) Conditionally store byte elements of d to address p. The high bit of each byte
in the selector n determines whether the corresponding byte in d will be stored. Address p need
not be 16-byte aligned.

if (nO[7]) p[O]
it (nif7]) pl[1]

if (n15[7]) p[15] := di5

do
di

_mm storel _epi64(__nm28i *p, _ ml28i Q)
(uses MOVQ) Stores the lower 64 bits of the value pointed to by p.
*p[63: 0] : =a0

221

Intrinsics for Itanium(TM) Instructions

Overview of Intrinsics for Itanium(TM) Instructions

This section lists and describes the native intrinsics for Itanium(TM) instructions. These intrinsics cannot
be used on the 1A-32 architecture. The intrinsics for Itanium instructions give programmers access to
Itanium instructions that cannot be generated using the standard constructs of the C and C++ languages.

The prototypes for Itanium intrinsics are in the i a64i ntri n. h header file.

Native Intrinsics for Iltanium(TM) Instructions

The prototypes for Itanium intrinsics are in the i a64i ntri n. h header file.

Integer Operations

Intrinsic

Corresponding
Instruction

_int64 b4 dep_nr(__int64 r,
s, const int pos, const int |en)

i nt 64

dep (Deposit)

__int64 _nb4_dep_m (const int v, dep (Deposit)
_int64 s, const int p, const int |en)
__int64 nb4 dep_zr(__int64 s, const dep.z (Deposit)
int pos, const int len)

int64 nB4 dep zi(const int v, const |dep.z (Deposit)
int pos, const int len)

int64 nb4 extr(int64 r, const int |extr(Extract
pos, const int |en)
__int64 _nb4_extru(__int64 r, const extr.u (Extract)
int pos, const int |en)
__int64 nB4_xmal (__int64 a, __int64 |xma.l (Fixed-point multiply add using the low 64 bits of the 128-
b, __int64 c) bit result. The result is signed.)
__int64 _nB4_xmalu(__int64 a, __int64 |xma.lu (Fixed-point multiply add using the low 64 bits of the
b, __int64 c) 128-hit result. The result is unsigned.)
_int64 b4 xmah(__int64 a, __int64 Xma. h (Fixed-point multiply add using the high 64 bits of the
b, _int64 c) 128-bit result. The result is signed.)
_int64 b4 xmahu(__int64 a, __int64 |xma. hu (Fixed-point multiply add using the high 64 bits of the
b, _int64 c) 128-bit result. The result is unsigned.)
~__int64 _nmb4 _popcnt(__int64 a) popcnt (Population count)
__int64 nb4 _shladd(__int64 a, const shladd (Shift left and add)
int count, __int64 b)
_int64 b4 shrp(__int64 a, __int64 shrp (Shift right pair)
b, const int count)

222

FSR Operations

Intrinsic Description

void _fsetc(int amask, int omask) Sets the control bits of FPSR. sf 0. Maps to the
fsetc.sfO r, r instruction. There is no corresponding
instruction to read the control bits. Use _mm get f psr ().

void _fclrf(void) Clears the floating point status flags (the 6-bit flags of
FPSR. sf 0). Maps tothe f cl r f . sf O instruction.

_int64 nb4 dep nr(__int64 r, _int64 s, const int pos, const int |en)

The right-justified 64-bit value r is deposited into the value in s at an arbitrary bit position and the
result is returned. The deposited bit field begins at bit position pos and extends to the left (toward
the most significant bit) the number of bits specified by | en.

_int64 nb4 dep_mi(const int v, __int64 s, const int p, const int |en)

The sign-extended value v (either all 1s or all 0s) is deposited into the value in s at an arbitrary bit
position and the result is returned. The deposited bit field begins at bit position p and extends to
the left (toward the most significant bit) the number of bits specified by | en.

_int64 nb4 _dep_zr(__int64 s, const int pos, const int |en)

The right-justified 64-bit value s is deposited into a 64-bit field of all zeros at an arbitrary bit position
and the result is returned. The deposited bit field begins at bit position pos and extends to the left
(toward the most significant bit) the number of bits specified by | en.

__int64 nb4 _dep_zi(const int v, const int pos, const int |en)

The sign-extended value v (either all 1s or all 0s) is deposited into a 64-bit field of all zeros at an
arbitrary bit position and the result is returned. The deposited bit field begins at bit position pos and
extends to the left (toward the most significant bit) the number of bits specified by | en.

_int64 b4 extr(__int64 r, const int pos, const int |en)

A field is extracted from the 64-bit value r and is returned right-justified and sign extended. The
extracted field begins at position pos and extends | en bits to the left. The sign is taken from the
most significant bit of the extracted field.

_int64 b4 _extru(__int64 r, const int pos, const int |en)

A field is extracted from the 64-bit value r and is returned right-justified and zero extended. The
extracted field begins at position pos and extends | en bits to the left. Also, it is necessary to link a
library to satisfy the function call generated by the compiler.

_int64 b4 xmal (__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit
signed result. The 64-bit value c is zero-extended and added to the product. The least significant
64 bits of the sum are then returned.

_int64 b4 xmalu(__int64 a, __int64 b, __int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit
unsigned result. The 64-bit value c is zero-extended and added to the product. The least significant
64 bits of the sum are then returned.

223

_inte4 nbd4 xmah(__int64 a,

__int64 b,

__int64 c)

The 64-bit values a and b are treated as signed integers and multiplied to produce a full 128-bit
signed result. The 64-bit value c is zero-extended and added to the product. The most significant

64 bits of the sum are then returned.

__int64 _nb4_xmahu(__int64 a,

__int64 b,

_int64 c)

The 64-bit values a and b are treated as unsigned integers and multiplied to produce a full 128-bit
unsigned result. The 64-bit value c is zero-extended and added to the product. The most
significant 64 bits of the sum are then returned.

__int64 _nb4_popcnt(__int64 a)

The number of bits in the 64-bit integer a that have the value 1 are counted, and the resulting sum

is returned.

__int64 _nb4_shladd(__int64 a, const

int count,

__int64 b)

a is shifted to the left by count bits and then added to b. The result is returned.

_int64 nb4_shrp(__int64 a,

__int64 b,

const int count)

a and b are concatenated to form a 128-bit value and shifted to the right count bits. The least

significant 64 bits of the result are returned.

Lock and Atomic Operation Related Intrinsics

The prototypes for Itanium intrinsics are in the i a64i ntri n. h header file.

Intrinsic

Description

unsi gned __int64

_Interl ockedExchange8(vol atile
unsi gned char *Target, unsigned
__int64 val ue)

Map to the XChg1 instruction. Atomically write the least
significant byte of its 2nd argument to address specified by its 1st
argument.

unsi gned _ int64

I nterl ockedConpar eExchange8 rel (vol at
il e unsigned char *Destination,

unsi gned __int64 Exchange, unsigned
__int64 Conparand)

Compare and exchange atomically the least significant byte at
the address specified by its 1st argument. Maps to the
cnpxchgl. r el instruction with appropriate setup.

unsi gned _ int64

I nterl ockedConpar eExchange8_acq(vol at
il e unsigned char *Destination,

unsi gned __int64 Exchange, unsigned
__int64 Conparand)

Same as above, but using acqui r € semantic.

unsi gned __ int64
_Interl ockedExchangel6(vol atil e

Map to the XChg2 instruction. Atomically write the least
significant word of its 2nd argument to address specified by its

_Interl ockedConpar eExchangel6 rel (vol a
tile unsigned short *Destination,

unsi gned __int64 Exchange, unsigned
__int64 Conparand)

unsi gned short *Target, unsigned 1st argument.
__int64 val ue)
unsi gned i nt 64 Compare and exchange atomically the least significant word at

the address specified by its 1st argument. Maps to the
cnpxchg2. r el instruction with appropriate setup.

224

Intrinsic

Description

unsi gned __int64

_Interl ockedConpar eExchangel6_acq(vol a
tile unsigned short *Destination,

unsi gned __ i nt64 Exchange, unsigned
__int64 Conparand)

Same as above, but using acqui r € semantic.

int Interlockedlncrenent(volatile int |Atomically increment by one the value specified by its argument.
*addend) Maps to the f et chadd4 instruction.

int InterlockedDecrenent (volatile int |Atomically decrement by one the value specified by its argument.
*addend) Maps to the f et chadd4 instruction.

int _InterlockedExchange(vol atile int |Doanexchange operation atomically. Maps to the XChg4
*Target, int value) instruction.

i nt Maps to the CrYpXChg4 instruction with appropriate setup.

_Interl ockedConpar eExchange(vol atil e
int *Destination, int Exchange, int
Conpar and)

Atomically compare and exchange the value specified by the first
argument (a 32-bit pointer).

int _Interl ockedExchangeAdd(vol atile
i nt *addend, int increnent)

Use compare and exchange to do an atomic add of the
increment value to the addend. Maps to a loop with the
cnpxchg4 instruction to guarantee atomicity.

int _InterlockedAdd(volatile int
*addend, int increnent)

Same as above; but returns new value, not the original one.

void *

_Interl ockedConpar eExchangePoi nt er (vo
d * volatile *Destination, void
*Exchange, void *Conparand)

Map the exXch8 instruction; Atomically compare and exchange
the pointer value specified by its first argument (all arguments
are pointers)

unsi gned __int64

_Interl ockedExchangeU(vol atil e
unsi gned int *Target, unsigned
val ue)

i nt 64

Atomically exchange the 32-bit quantity specified by the 1st
argument. Maps to the Xchg4 instruction.

unsi gned _ int64

_Interl ockedConpar eExchange_rel (vol at

[e unsigned int *Destination, unsigned
__int64 Exchange, unsigned __int64
Conpar and)

Maps to the crrpxchg4. r el instruction with appropriate
setup. Atomically compare and exchange the value specified by
the first argument (a 64-bit pointer).

unsi gned _ int64

_Interl ockedConpar eExchange_acq(vol at

[e unsigned int *Destination, unsigned
__int64 Exchange, unsigned __int64
Conpar and)

Same as above; but map the cfpxchg4. acq instruction.

voi d _Rel easeSpi nLock(volatile int *x)

Release spin lock.

__int64
_Interl ockedl ncrenent 64(vol atile
__int64 *addend)

Increment by one the value specified by its argument. Maps to
the f et chadd instruction.

__int64
_Interl ockedDecrenent 64(vol atile
__int64 *addend)

Decrement by one the value specified by its argument. Maps to
the f et chadd instruction.

225

Intrinsic

Description

__int64

_Interl ockedExchange64(vol atil e
__int64 *Target, __int64 val ue)

Do an exchange operation atomically. Maps to the XC hg
instruction.

unsigned __int64

_Interl ockedExchangeU64(vol atil e
unsigned __int64 *Target, unsigned
__int64 val ue)

same as | nt er | ockedExchange64 (for unsigned
quantities).

unsi gned __int64

I nterl ockedConpar eExchange64 _rel (vol a
tile unsigned __int64 *Destination,
unsi gned __int64 Exchange, unsigned
__int64 Conparand)

Maps to the cmpXxchg. r el instruction with appropriate
setup. Atomically compare and exchange the value specified by
the first argument (a 64-bit pointer).

unsi gned __int64

I nterl ockedConpar eExchange64_acq(vol a
tile unsigned __int64 *Destination,
unsi gned __int64 Exchange, unsigned
__int64 Conparand)

Maps to the CNPXC h g. ac(instruction with appropriate
setup. Atomically compare and exchange the value specified by
the first argument (a 64-bit pointer).

__int64

I nt erl ockedConpar eExchange64(vol atil e
__int64 *Destination, __int64
Exchange, __int64 Conparand)

Same as above for signed quantities.

i nt 64
“I'nterl ockedExchangeAdd64(vol atile
__int64 *addend, __int64 increment)

Use compare and exchange to do an atomic add of the
increment value to the addend. Maps to a loop with the
cnpxchg instruction to guarantee atomicity

__int64 _Interl ockedAdd64(vol atile
__int64 *addend, __int64 increnment);

Same as above. Returns the new value, not the original value.

Operating System Related Intrinsics

The prototypes for Itanium intrinsics are in the i a64i ntri n. h header file.

Intrinsic

Description

unsigned __int64 _ getReg(const int

whi chReg)

Gets the value from a hardware register based on the index
passed in. Produces a corresponding MOV = [instruction.
Provides access to the following registers:

See Register Names for getReg() and setReg().

__int64 val ue)

void __setReg(const int whichReg, Sets the value for a hardware register based on the index passed
unsi gned __int64 val ue) in. Produces a corresponding MOV = I instruction.

See Register Names for getReg() and setReg().
unsi gned i nt 64 get I ndReg(const i nt [Returnthe value of an indexed register. The index is the 2nd
whi chl ndReg, __int64 index) argument; the register file is the first argument.
void __ setlndReg(const int Copy a value in an indexed register. The index is the 2nd
whi chl ndReg, __ i nt64 index, unsigned argument; the register file is the first argument.

void *_rdteb(void)

Gets TEB address. The TEB address is kept in r 13 and maps
to the move I =t p instruction

226

Intrinsic

Description

void

isrlz(void)

Executes the serialize instruction. Maps to the ST | z. |
instruction.

void _ dsrlz(void)

Serializes the data. Maps to the Sr | z. d instruction.

unsi gned __int64
__fetchadd4_acqg(unsi gned int *addend,
nt increnent)

const i

Map the f et chadd4. acq instruction.

unsigned __int64
__fetchadd4_rel (unsigned int *addend,
nt increnent)

const i

Map the f et chadd4. r el instruction.

unsigned __int64
~_fetchadd8 acqg(unsigned __int64
*addend, const int

i ncrenent)

Map the f et chadd8. acq instruction.

unsigned __int64
__fetchadd8_rel (unsigned __int64
*addend, const int

i ncrenent)

Map the f et chadd8. r el instruction.

void _ fwb(void)

Flushes the write buffers. Maps to the f Wb instruction.

void __ldfs(const int whichFloatReg, Map the | df S instruction. Load a single precision value to the
voi d *src) specified register.
void __ldfd(const int whichFl oatReg, Map the | df d instruction. Load a double precision value to the
voi d *src) specified register.
void __Ildfe(const int whichFl oatReg, Map the | df e instruction. Load an extended precision value to

voi d *src)

the specified register.

voi d

| df 8(const

void *src)

i nt whi chFl oat Reg,

Map the | df 8 instruction.

voi d

_ldf _fill(const int
whi chFl oat Reg, void *src)

Map the | df . fi || instruction.

void _ stfs(void *dst, const int

Map the Sf t S instruction.

whi chFl oat Reg)

void _stfd(void *dst, const int Map the St f d instruction.

whi chFl oat Reg)

void _stfe(void *dst, const int Map the St f € instruction.

whi chFl oat Req)

void _ stf8(void *dst, const int Map the St f 8 instruction.

whi chFl oat Req)

void stf spill(void *dst, const int [Mapthestf.spill instruction.

whi chFl oat Req)

void __ nf(void) Executes a memory fence instruction. Maps to the nff
instruction.

void _ nfa(void) Executes a memory fence, acceptance form instruction. Maps to

the f . & instruction.

227

Intrinsic

Description

void __synci (void)

Enables memory synchronization. Maps to the Sync. i
instruction.

void _ thash(__int64)

Generates a translation hash entry address. Maps to the
thash r = r instruction.

void _ttag(__int64)

Generates a translation hash entry tag. Mapstothe t t ag
I =r instruction.

void _itcd(__int64 pa) Insert an entry into the data translation cache (Map i t c. d
instruction).
void __itci(__int64 pa) Insert an entry into the instruction translation cache (Map

itc.i).

void __itrd(__int64 whichTransReg,
__int64 pa)

Map the i t r . d instruction.

void __itri(__int64 whichTransReg,
__int64 pa)

Map thei t r. i instruction.

void _ ptce(__int64 va)

Map the pt C. € instruction.

void _ptcl(__int64 va, __int64 Purges the local translation cache. Mapstothept c. | r, r
pagesz) instruction.

void ptcg(__int64 va, __ int64 Purges the global translation cache. Maps tothe pt . g T,
pagesz) I instruction.

void _ _ptcga(__int64 va, __int64 Purges the global translation cache and ALAT. Maps to the
pagesz) ptc.ga r, r instruction.

void ptri(__int64 va, __int64 Purges the translation register. Mapstothe pt r. i r, r
pagesz) instruction.

void ptrd(__int64 va, _ int64 Purges the translation register. Mapstothe ptr.d r, r

pagesz)

instruction.

__int64 __tpa(__int64 va)

Map the t pa instruction.

void __invalat(void) Invalidates ALAT. Maps to the i nval a instruction.
void __invala (void) sameasVvoi d __inval at (voi d)
void __invala gr(const int whi chGener al Reg =0-127

whi chGener al Reg)

void __invala fr(const int
whi chFl oat Reg)

whi chFl oat Reg = 0-127

void __ break(const int)

Generates a break instruction with an immediate.

void _ nop(const int)

Generate a NOP instruction.

voi d __debugbreak(void)

Generates a Debug Break Instruction fault.

void _ fc(__int64)

Flushes a cache line associated with the address given by the
argument. Maps to the f CT instruction.

228

Intrinsic Description

void _ sun(int nask) Sets the user mask bits of PSR Maps to the sum i m24
instruction.

void __run(int mask) Resets the user mask.

void __ssm(int mask) Sets the system mask.

void _ rsn(int nmask) Resets the system mask bits of PSR Maps to the r sm

i M4 instruction.

__int64 _ReturnAddress(void)

Get the caller's address.

void __Ifetch(int Ifhint, void *y) Generate the | f et ch. | f hi nt instruction. The value of the
first argument specifies the hint type.
void Ifetch fault(int Ifhint, void Generate the | f et ch. faul t. | f hi nt instruction. The

*y)

value of the first argument specifies the hint type.

Itanium(TM) Conversion Intrinsics

The prototypes for Itanium intrinsics are in the i a64i ntri n. h header file.

Intrinsic

Description

_int64 mto_int64(__nb64 a)

Converta oftype _ nB4 totype i nt 64.
Translates to NOP since both types reside in the same
register on Itanium-based systems.

_mB4 _mfromint64(__int64 a)

Convert a of type i Nt 64 totype B4, Translates
to NOP since both types reside in the same register on
Itanium-based systems.

__int64 _ _round_doubl e _to_int64(double d)

Convert its double precision argument to a signed integer.

unsigned __int64 _ getf exp(double d)

Map the get f . exp instruction and return the 16-bit
exponent and the sign of its operand.

Register Names for getReg() and setReg()

The prototypes for get Reg() and set Reg() intrinsics are in the i a64r egs. h header file.

Name whichReg
I A64_REG | P 1016
| A64_REG PSR 1019
| A64_REG PSR L 1019

229

General Integer Registers

Name

whichReg

1 A64_REG GP

1025

1 A64_REG SP

1036

1 A64_REG TP

1037

Application Registers

Name

whichReg

1 A64_REG_AR_KRO

3072

1 A64_REG AR KR1

3073

1 A64_REG AR KR2

3074

1 A64_REG AR KR3

3075

1 A64_REG_AR_KR4

3076

1 A64_REG AR KR5

3077

1 A64_REG_ AR _KR6

3078

1 A64_REG AR KR7

3079

1 A64_REG_AR_RSC

3088

1 A64_REG AR BSP

3089

1 A64_REG_AR _BSPSTORE

3090

1 A64_REG AR RNAT

3091

1 A64_REG AR FCR

3093

1 A64_REG_AR_EFLAG

3096

1 A64_REG_AR_CSD

3097

1 A64_REG_AR_SSD

3098

1 A64_REG AR _CFLAG

3099

1 A64_REG AR _FSR

3100

1 A64_REG AR _FIR

3101

1 A64_REG_AR_FDR

3102

1 A64_REG AR _CCV

3104

1 A64_REG_AR_UNAT

3108

1 A64_REG AR FPSR

3112

230

Name

whichReg

1 A64_REG AR | TC

3116

1 A64_REG AR _PFS

3136

1 A64_REG AR LC

3137

1 A64_REG AR _EC

3138

Control Registers

Name

whichReg

1 A64_REG CR_DCR

4096

1 A64_REG CR I TM

4097

1 A64_REG CR | VA

4098

1 A64_REG_CR_PTA

4104

1 A64_REG CR_| PSR

4112

1 A64_REG CR_I SR

4113

1A64 REGCR IIP

4115

1 A64_REG CR | FA

4116

1 A64_REG CR ITIR

4117

1 A64_REG CR | | PA

4118

1 A64_REG CR | FS

4119

1 A64_REG CR | I M

4120

1 A64_REG CR_| HA

4121

1 A64_REG CR LID

4160

1 A64_REG CR_I VR

4161 *

| A4_REG CR _TPR

4162

1 A64_REG_CR_EQI

4163

1 A64_REG CR | RRO

4164 *

1 A64_REG CR_| RR1

4165 *

1 A64_REG CR_| RR2

4166 *

1 A64_REG CR_| RR3

4167 *

1 A64_REG CR I TV

4168

1 A64_REG CR_PW

4169

231

Name whichReg
| A64_REG CR_CMCV 4170
| A64_REG CR_LRRO 4176
| A64_REG CR_LRR1 4177

* get Reg only

Indirect Registers for getindReg() and setindReg()

Name whichReg
| A64_REG | NDR_CPUI D 9000 *

_| A64_REG | NDR_DBR 9001

| A64_REG | NDR | BR 9002

_| A64_REG | NDR_PKR 9003

| A64_REG | NDR_PMC 9004

_| A64_REG | NDR_PND 9005

| A64_REG | NDR_RR 9006

_| A64_REG | NDR_RESERVED 9007

* get | ndReg only

Itanium(TM) Multimedia Additions

The prototypes for Itanium intrinsics are in the i a64i ntri n. h header file.

Intrinsic

Corresponding Instruction

__int64 _nb4_czxll (__nbB4 a)

czx1.l (Compute Zero Index)

__int64 _nb4_czxlr(__nb4 a)

czXx1.r (Compute Zero Index)

__int64 _nbd_czx2l (__nb4 a)

€zx2.| (Compute Zero Index)

_int64 nb4 _czx2r(__nbB4 a)

CZX2.r (Compute Zero Index)

b4 b4 _nixll (__nb4 a, __nb4 b) mixL.I (Mix)
_ nB4 b4 _m x1lr(__nb4 a, __nb4 b) mixZ1.r (Mix)
~ nmb4 b4 _nmix2l (__nb4 a, _ _nb4 b) mix2.| (Mix)
b4 b4 _nmix2r(__nb4 a, _ _nb4 b) MiX2.1 (Mix)
b4 b4 _nix4l (__nb4 a, __nb4 b) mix4.| (Mix)
b4 b4 _nmixdr(__nb4d a, _ _nb4 b) MiX4.1 (Mix)

232

Intrinsic Corresponding Instruction
__mb4 b4 _nuxl(__nB4 a, const int n) mux1 (Mux)
b4 b4 _nux2(__nB4 a, const int n) mux2 (Mux)

__n64 _nb64_paddluus(__nb4 a, __nb4 b) paddl.uus (Parallel add)

__nmb64 _nb64_padd2uus(__nb4 a, __nb4 b) padd?2.uus (Parallel add)

__nb4 _nb4_pavgl_nraz(__nmb4 a, __nb4 b) pavgl (Parallel average)

__nb4 _nb4_pavg2_nraz(__nb4 a, __nb4 b) pavg?2 (Parallel average)

__nb4 _nb4_pavgsubl(__nb4 a, __nb4 b) pavgsubl (Parallel average subtract)
__nb4 _nb4_pavgsub2(__nb4 a, __nb4 b) pavgsub?2 (Parallel average subtract)
__nB4 _nb4_pnpy2r(__nb4 a, __nbB4 b) pmpy2.r (Parallel multiply)

__nb4 _nb4_pnpy2l (__nb4 a, __nb4 b) pmpy2.| (Parallel multiply)

EBHE?) _nm64_pnpyshr2(__n64 a, __n64 b, const int |pmpyshr2 (Parallel multiply and shift right)
__nmB4 _nB4_pnpyshr2u(__n64 a, __nB4 b, const int |pmpyshr2.u (Parallel multiply and shift right)

count)

~_mb64 b4 _pshl add2(__nb4 a,
__nb4 b)

const int count,

pshladd?2 (parallel shift left and add)

b4 b4 _pshradd2(__nb4 a,
__nB4 b)

const int count,

pshradd?2 (Parallel shift right and add)

__nB64 _nb4_psubluus(__nb4 a,

__nmb4 b)

psubl.uus (Parallel subtract)

__nB64 _nb4_psub2uus(__nb4 a,

__nmb4 b)

psub2.uus (Parallel subtract)

_int64 nbd4_czx1ll (__nb4 a)

The 64-bit value a is scanned for a zero element from the most significant element to the least

significant element, and the index of the first zero element is returned. The element width is 8 bits,
so the range of the result is from 0 - 7. If no zero element is found, the default result is 8.

_int64 b4 _czxlr(__nbB4 a)

The 64-bit value a is scanned for a zero element from the least significant element to the most

significant element, and the index of the first zero element is returned. The element width is 8 bits,
so the range of the result is from 0 - 7. If no zero element is found, the default result is 8.

_int64 nmb4 czx2l (__nbB4 a)

The 64-bit value a is scanned for a zero element from the most significant element to the least

significant element, and the index of the first zero element is returned. The element width is 16 bits,
so the range of the result is from O - 3. If no zero element is found, the default result is 4.

233

_int64 _nb4_czx2r(__nb4 a)

The 64-bit value a is scanned for a zero element from the least significant element to the most
significant element, and the index of the first zero element is returned. The element width is 16 bits,
so the range of the result is from 0 - 3. If no zero element is found, the default result is 4.

_ nb4 nbd mx1l (__nm64 a, _ _nbB4 h)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the left, as shown in Figure 1,
and return the result.

EHE W
A i

EE R

B4 _nb4_mixlr(__nb4 a, _ b4 b)

Interleave 64-bit quantities a and b in 1-byte groups, starting from the right, as shown in Figure 2,
and return the result.

| E B B R

B4 _nb4_nmix2l (__nb4 a, __nmb4 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the left, as shown in Figure 3,
and return the result.

B4 _nB4_mix2r(__nb4 a, __nmb4 b)

Interleave 64-bit quantities a and b in 2-byte groups, starting from the right, as shown in Figure 4,
and return the result.

CEE O mR 0) [
NS

234

B4 _nB4_nmix4l (__nb4 a, __nmb4 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the left, as shown in Figure 5,
and return the result.

_ nB4 nbB4d _mxdr(__nm64 a, _ _nb4 b)

Interleave 64-bit quantities a and b in 4-byte groups, starting from the right, as shown in Figure 6,
and return the result.

235

__nb4 nb4_mux1(__nbB4 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 7, and the result is
returned. Table 1 shows the possible values of n.

& rav 0 mix

M hrcst

Table 1. Values of n for m64_mux1Operation

n
@r cst 0
@i x 8
@&huf 9
@l t OxA
@ ev 0xB

236

__nb4 nb4_mux2(__nbB4 a, const int n)

Based on the value of n, a permutation is performed on a as shown in Figure 8, and the result is
returned.

GR oo

GRry

mux2 11 =12, 0x1b freverse 0001 10 11)

muxd 1 = 2, Oxed (altemata 11 01 10 00) mux2 rl =2, Oxaa (broadoast 10 10 10 10)

Fig 8

__nb4 _nb4_pavgsubl(__nmb64 a, _ nb4 b)

The unsigned data elements (bytes) of b are subtracted from the unsigned data elements (bytes)
of a and the results of the subtraction are then each independently shifted to the right by one
position. The high-order bits of each element are filled with the borrow bits of the subtraction.

__nb4 _nb4_pavgsub2(__nmb4 a, _ nb4 b)
The unsigned data elements (double bytes) of b are subtracted from the unsigned data elements

(double bytes) of a and the results of the subtraction are then each independently shifted to the

right by one position. The high-order bits of each element are filled with the borrow bits of the
subtraction.

237

__nb4 nb4_pnpy2l (__nmb4 a, __nb4 b)

Two signed 16-bit data elements of a, starting with the most significant data element, are multiplied
by the corresponding two signed 16-bit data elements of b, and the two 32-bit results are returned
as shown in Figure 9.

Fig 9
__nBb4 nb4_pnpy2r(__nb4d a, _ nb4 b)

Two signed 16-bit data elements of a, starting with the least significant data element, are multiplied
by the corresponding two signed 16-bit data elements of b, and the two 32-bit results are returned

as shown in Figure 10.

L

1

'\, e,

Fig 10

__nb4 _nb4_pnpyshr2(__nm64 a, _ nb4d b, const int count)

The four signed 16-bit data elements of a are multiplied by the corresponding signed 16-bit data
elements of b, yielding four 32-bit products. Each product is then shifted to the right count bits and
the least significant 16 bits of each shifted product form 4 16-bit results, which are returned as one
64-bit word.

__m64 _nb4_prpyshr2u(__nm64 a, _ nb4 b, const int count)

The four unsigned 16-bit data elements of a are multiplied by the corresponding unsigned 16-bit
data elements of b, yielding four 32-bit products. Each product is then shifted to the right count bits
and the least significant 16 bits of each shifted product form 4 16-bit results, which are returned as
one 64-bit word.

238

__mb4 _nb64_pshl add2(__nbB4 a, const int count, _ nb4 b)

a is shifted to the left by count bits and then is added to b. The upper 32 bits of the result are
forced to 0, and then bits [31:30] of b are copied to bits [62:61] of the result. The result is returned.

__nb64 b4 _pshradd2(__nmb64 a, const int count, _ nb4 b)

The four signed 16-bit data elements of a are each independently shifted to the right by count bits
(the high order bits of each element are filled with the initial value of the sign bits of the data
elements in a); they are then added to the four signed 16-bit data elements of b. The result is
returned.

__nmb4 b4 _paddluus(__nb64 a, _ nbB4 b)

a is added to b as eight separate byte-wide elements. The elements of a are treated as unsigned,
while the elements of b are treated as signed. The results are treated as unsigned and are
returned as one 64-bit word.

__nb64 b4 _padd2uus(__nmb64 a, _ nb4 b)

a is added to b as four separate 16-bit wide elements. The elements of a are treated as unsigned,
while the elements of b are treated as signed. The results are treated as unsigned and are
returned as one 64-bit word.

__nb64 b4 _psubluus(__nmb64 a, _ nb4 b)

a is subtracted from b as eight separate byte-wide elements. The elements of a are treated as
unsigned, while the elements of b are treated as signed. The results are treated as unsigned and
are returned as one 64-bit word.

__nmb4 b4 _psub2uus(__nb4 a, _ nbB4 b)

a is subtracted from b as four separate 16-bit wide elements. The elements of a are treated as
unsigned, while the elements of b are treated as signed. The results are treated as unsigned and
are returned as one 64-bit word.

__nmB4 _nb4_pavgl_nraz(__nb4 a, __nb4 b)

The unsigned byte-wide data elements of a are added to the unsigned byte-wide data elements of
b and the results of each add are then independently shifted to the right by one position. The high-
order bits of each element are filled with the carry bits of the sums.

__nb64 _nb4_pavg2_nraz(__nm64 a, _ _nb4 b)

The unsigned 16-bit wide data elements of a are added to the unsigned 16-bit wide data elements
of b and the results of each add are then independently shifted to the right by one position. The
high-order bits of each element are filled with the carry bits of the sums.

239

Data Alignment, Memory Allocation Intrinsics, and
Inline Assembly

Overview of Data Alignment, Memory Allocation Intrinsics, and Inline
Assembly

This section describes features that support usage of the intrinsics. The following topics are described:
e Alignment Support
* Allocating and Freeing Aligned Memory Blocks

* Inline Assembly

Alignment Support

To improve intrinsics performance, you need to align data. For example, when you are using the
Streaming SIMD Extensions, you should align data to 16 bytes in memory operations to improve
performance. Specifically, you must align __ nil28 objects as addresses passed to the _mm | oad and
_nmm st or e intrinsics. If you want to declare arrays of floats and treat them as __ n1.28 objects by
casting, you need to ensure that the float arrays are properly aligned.

Use decl spec(align) to direct the compiler to align data more strictly than it otherwise does on
both IA-32 and Itanium(TM)-based systems. For example, a data object of type int is allocated at a byte
address which is a multiple of 4 by default (the size of an int). However, by using __decl spec(al i gn),
you can direct the compiler to instead use an address which is a multiple of 8, 16, or 32 with the following
restrictions on IA-32:

* 32-byte addresses must be statically allocated
* 16-byte addresses can be locally or statically allocated

You can use this data alignment support as an advantage in optimizing cache line usage. By clustering
small objects that are commonly used together into a st ruct , and forcing the st r uct to be allocated at
the beginning of a cache line, you can effectively guarantee that each object is loaded into the cache as
sSoon as any one is accessed, resulting in a significant performance benefit.

The syntax of this extended-attribute is as follows:
align(n)

where n is an integral power of 2, less than or equal to 32. The value specified is the requested
alignment.

&Caution

In this release, __decl spec(al i gn(8)) does not function correctly. Use __decl spec(al i gn(16))
instead.

240

ENote

If a value is specified that is less than the alignment of the affected data type, it has no effect. In other
words, data is aligned to the maximum of its own alignment or the alignment specified with
__decl spec(align).

You can request alignments for individual variables, whether of static or automatic storage duration.
(Global and static variables have static storage duration; local variables have automatic storage duration
by default.) You cannot adjust the alignment of a parameter, nor a field of a st ruct or cl ass. You can,
however, increase the alignment of a st ruct (or uni on or cl ass), in which case every object of that
type is affected.

As an example, suppose that a function uses local variables i and | as subscripts into a 2-dimensional
array. They might be declared as follows:

inti, j;

These variables are commonly used together. But they can fall in different cache lines, which could be
detrimental to performance. You can instead declare them as follows:

__declspec(align(8)) struct { int i, j; } sub;
The compiler now ensures that they are allocated in the same cache line. In C++, you can omit the
struct variable name (written as sub in the above example). In C, however, it is required, and you must

write references toi andj assub.i andsub.j.

If you use many functions with such subscript pairs, it is more convenient to declare and use a st r uct
type for them, as in the following example:

typedef struct __declspec(align(8)) { int i, j; } Sub;

By placing the __decl spec(al i gn) after the keyword st r uct, you are requesting the appropriate
alignment for all objects of that type. However, that allocation of parameters is unaffected by

__decl spec(align). (If necessary, you can assign the value of a parameter to a local variable with the
appropriate alignment.)

You can also force alignment of global variables, such as arrays:

__declspec(align(16)) float array[1000];

Allocating and Freeing Aligned Memory Blocks

Usethe _nm mal | oc and _mm f r ee intrinsics to allocate and free aligned blocks of memory. These
intrinsics are based on nal | oc and f r ee, which are in the | i bi r c. a library. The syntax for these
intrinsics is as follows:

void* _mm_malloc (int size, int align)

void _mm_free (void *p)

The _mm nal | oc routine takes an extra parameter, which is the alignment constraint. This constraint

must be a power of two. The pointer that is returned from _nmm mal | oc is guaranteed to be aligned on
the specified boundary.

241

ENote

Memory that is allocated using _nm nmal | oc must be freed using _nm f ree . Calling f r ee on memory
allocated with _nm mal | oc or calling _nm fr ee on memory allocated with mal | oc will cause
unpredictable behavior.

Inline Assembly

By default, the compiler inlines a number of standard C, C++, and math library functions. This usually
results in faster execution of your program.

Sometimes inline expansion of library functions can cause unexpected results. The inlined library
functions do not set the er r no variable. So, in code that relies upon the setting of the er r no variable,
you should use the - nol i b_i nl i ne option, which turns off inline expansion of library functions. Also, if
one of your functions has the same name as one of the compiler's supplied library functions, the compiler
assumes that it is one of the latter and replaces the call with the inlined version. Consequently, if the
program defines a function with the same name as one of the known library routines, you must use the -
nol i b_i nl i ne option to ensure that the program's function is the one used.

"f:}Note

Automatic inline expansion of library functions is not related to the inline expansion that the compiler does
during interprocedural optimizations. For example, the following command compiles the program sum.cpp
without expanding the library functions, but with inline expansion from interprocedural optimizations (IPO):
* 1A-32 Systems: pronpt>icc -ip -nolib_inline sumcpp
e ltanium(TM)-based Systems: pronpt>ecc -ip -nolib_inline sum cpp
For details on IPO, see Interprocedural Optimizations.

MASM* Style Inline Assembly

The Intel® C++ Compiler supports MASM style inline assembly with the - use_nsasmoption. See your
MASM documentation for the proper syntax.

GNU*-like Style Inline Assembly

The Intel® C++ Compiler supports GNU-like style inline assembly. The syntax is as follows:

asm keyword [volatile-keyword] (asmtenplate [asminterface |) ;

Syntax Element Description

asm keyword as Mmstatements begin with the keyword asSm Alternatively, either __aSmor __asm__ may
be used for compatibility.

vol ati | e- keywor d If the optional keyword VOl at i | e is given, the asmis volatile. Twovol ati |l e asm
statements will never be moved past each other, and a reference to a Vol at i | e variable will
not be moved relative to a volatile asm Alternate keywords __ vol ati | e and

_vol atil e__ may be used for compatibility.

asmtenpl ate The asm t enpl at e is a C language ASCII string which specifies how to output the assembly
code for an instruction. Most of the template is a fixed string; everything but the substitution-
directives, if any, is passed through to the assembler. The syntax for a substitution directive is a %
followed by one or two characters. The supported substitution directives are specified in a
subsequent section.

242

Syntax Element

Description

asminterface

The asm i nt er f ace consists of three parts:

1. an optional out put - | i st

2. anoptional i nput - | i st

3. an optional ¢l obber - i st

These are separated by colon (:) characters. If the out put - | i st is missing, but an

i nput -1 i st is given, the input list may be preceded by two colons (::)to take the place of the
missing out put - | i st . Iftheasnt i nt er f ace is omitted altogether, the aS Mstatement
is considered Vol at i | e regardless of whether avol at i | e- keywor d was specified.

out put-1i st

Anout put - | i st consists of one or more OUt put - Specs separated by commas. For
the purposes of substitution in the asm t enpl at e, each out put - Spec is numbered.
The first operand in the out put - | i St is numbered 0, the second is 1, and so on. Numbering
is continuous through the out put - | i st andintothe i nput - | i St. The total number of
operands is limited to 10 (i.e. 0-9).

i nput -1i st

Similar to an out put - | i st ,ani nput - | i st consists of one or more i Nput - specs
separated by commas. For the purposes of substitution in the asm t errpl at e, each
i nput - spec is numbered, with the numbers continuing from those in the out put - | i st.

cl obber-1i st

Acl obber-11i st tells the compiler that the aS Muses or changes a specific machine
register that is either coded direc_:tly into the aS Mor is changed implicitly by the assembly
instruction. The cl obber - | i st is a comma-separated list of C| obber - specs.

i nput - spec

The i nput - specs tell the compiler about expressions whose values may be needed by the
inserted assembly instruction. In order to describe fully the input requirements of the as m you
can listi Nput - Specs that are not actually referenced in the asm t enpl at e.

cl obber - spec

Each cl obber -s pec specifies the name of a single machine register that is clobbered. The
register name may optionally be preceded by a % The following are the valid register names:
eax, ebx, ecx, edx, esi, edi, ebp, esp, ax, bx, cx, dx, si, di, bp, sp, al, bl, cl, dl, ah, bh, ch, dh, st,
st(1) — st(7), mmO — mm7, xmmO — xmm7, and cc. Itis also legal to specify “memory” in a

cl obber - Spec. This prevents the compiler from keeping data cached in registers across the
as Mmstatement.

243

Intrinsics Cross-processor Implementation

Intrinsics Cross-processor Implementation

This section provides a series of tables that compare intrinsics performance across architectures. Before
implementing intrinsics across architectures, please note the following.

* Instrinsics may generate code that does not run on all 1A processors. Therefore the programmer
is responsible for using CPUI D to detect the processor and generating the appropriate code.

* Implement intrinsics by processor family, not by specific processor. The guiding principle for
which family—IA-32 or Itanium(TM) processors—the intrinsic is implemented on is performance,

not compatibility. Where there is added performance on both families, the intrinsic will be
identical.

Intrinsics For Implementation Across All 1A

Key to the table entries
* A= Expected to give significant performance gain over non-intrinsic-based code equivalent.

* B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

* C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Across All 1A |[MMX(TM) Streaming Streaming [tanium(TM)

Technology SIMD SIMD Architecture
Extensions Extensions 2

int abs(int) [A A A A A

| ong A A A A A

| abs (| ong)

unsi gned A A A A A

| ong

__lrotl (unsi

gned | ong

val ue, int

shift)

unsi gned A A A A A

| ong

__lrotr(unsi

gned | ong

val ue, int

shift)

unsi gned int |A A A A A

__rotl(unsig

ned int

val ue, int

shift)

unsi gned int |A A A A A

244

Intrinsic

Across All 1A

MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

[tanium(TM)
Architecture

__rotr(unsig
ned int

val ue, int
shift)

__int64
i64 rotl(
_int64

val ue, int
shift)

__int64
__i64_rotr(_
_int64

val ue, int
shift)

doubl e
fabs(doubl e)

doubl e
| og(doubl e)

fl oat
| ogf (fl oat)

doubl e
| 0g10(doubl e
)

fl oat
| 0g10f (f I oat
)

doubl e
exp(doubl e)

f | oat
expf (fl oat)

doubl e
pow(doubl e,
doubl e)

fl oat
powf (f 1 oat,
float)

doubl e
si n(doubl e)

fl oat
sinf(float)

doubl e
cos(doubl e)

245

Intrinsic Across All 1A |[MMX(TM) Streaming Streaming [tanium(TM)

Technology SIMD SIMD Architecture
Extensions Extensions 2

f | oat A A A A A

cosf (fl oat)

doubl e A A A A A

tan(doubl e)

fl oat A A A A A

tanf (fl oat)

doubl e A A A A A

acos(doubl e)

fl oat A A A A A

acosf (fl oat)

doubl e A A A A A

acosh(doubl e

)

fl oat A A A A A

acoshf (fl oat

doubl e A A A A A

asi n(doubl e)

fl oat A A A A A

asi nf (fl oat)

doubl e A A A A A

asi nh(doubl e

fl oat A A A A A

asi nhf (f | oat

)

doubl e A A A A A

at an(doubl e)

fl oat A A A A A

atanf (fl oat)

doubl e A A A A A

at anh(doubl e

)

fl oat A A A A A

at anhf (f1 oat

)

fl oat A A A A A

cabs(doubl e)

*

doubl e A A A A A

cei |l (doubl e)

246

Intrinsic Across All 1A |[MMX(TM) Streaming Streaming [tanium(TM)

Technology SIMD SIMD Architecture
Extensions Extensions 2

f | oat A A A A A

ceil f(float)

doubl e A A A A A

cosh(doubl e)

fl oat A A A A A

coshf (fl oat)

fl oat A A A A A

fabsf (fl oat)

doubl e A A A A A

f1 oor (doubl e

)

fl oat A A A A A

floorf(fl oat

)

doubl e A A A A A

f nod(doubl e)

f | oat A A A A A

f nodf (1 oat)

doubl e A A A A A

hypot (doubl e

, doubl e)

fl oat A A A A A

hypot f (f| oat

)

doubl e A A A A A

rint(doubl e)

fl oat A A A A A

rintf(float)

doubl e A A A A A

si nh(doubl e)

fl oat A A A A A

si nhf (fl oat)

fl oat A A A A A

sqrtf(float)

doubl e A A A A A

t anh(doubl e)

fl oat A A A A A

tanhf (f1 oat)

247

Intrinsic

Across All 1A

MMX(TM)
Technology

Streaming
SIMD
Extensions

Streaming
SIMD
Extensions 2

[tanium(TM)
Architecture

char
* strset(cha
r *, _int32)

A

A

voi d
*mencnp(cons
t void *cs,
const void
*ct, size_ t
n)

voi d
*mencpy(voi d
*s, const
void *ct,
size_t n)

voi d

*menset (voi d
* s, int c,
size_t n)

char

*Strcat (char
* s, const
char * ct)

i nt
*strcnp(cons
t char *,
const char

*)

char
*strcpy(char
* s, const
char * ct)

size_t
strl en(const
char * cs)

i nt

strncnp(char
*, char *,

i nt)

i nt

st rncpy(char
* char *,
int)

voi d
* _alloca(in

t)

248

Intrinsic Across All 1A |[MMX(TM) Streaming Streaming [tanium(TM)

Technology SIMD SIMD Architecture
Extensions Extensions 2

int . A A A A A

setjnp(j np

buf)

_exception_c |A A A A A

ode(voi d)

_exception_i |A A A A A

nf o(voi d)

_abnornal _te |A A A A A

rmnation(vo

i d)

voi d A A A A A

_enabl e()

voi d A A A A A

_di sabl e()

i nt A A A A A

_bswap(int)

i nt A A A A A

_in_byte(int

)

i nt A A A A A

_in_dword(in

t)

i nt A A A A A

_in_word(int

i nt A A A A A

_inp(int)

i nt A A A A A

_inpd(int)

i nt A A A A A

_inpw(int)

i nt A A A A A

_out_byte(in

t, int)

i nt A A A A A

_out _dword(i

nt, int)

i nt A A A A A

_out_word(in

t, int)

249

Intrinsic Across All 1A |[MMX(TM) Streaming Streaming [tanium(TM)

Technology SIMD SIMD Architecture
Extensions Extensions 2

i nt A A A A A

_out p(int,

i nt)

i nt A A A A A

_out pd(int,

i nt)

i nt A A A A A

_out pw(int,

i nt)

250

MMX(TM) Technology Intrinsics Implementation

Key to the table entries

* A= Expected to give significant performance gain over non-intrinsic-based code equivalent.

* B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

* C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Alternate Across MMX(TM Streaming Streaming Itanium(TM
Name Name All 1A Technology [SIMD SIMD Architecture
Extensions |Extensions 2

_m enpty mm enpty [N/A A A A B

_mfromin [_mmcvtsi3 [NA A A A A

t 2_si 64

~mto_int | mmcvtsi6 |NA A A A A
4 si 32

_m packssw [_mm packs_ [N/A A A A A

b pi 16

_m packssd [_mm packs_ |[N/A A A A A

W pi 32

~m packusw [_mm packs_ |N/A A A A A

b pulé6

_m punpckh [_mm unpack |N/A A A A A

bw hi _pi 8

_m _punpckh [_mm unpack |N/A A A A A

wd hi _pi 16

_m punpckh [_mm unpack |N/A A A A A

dq hi _pi 32

~m punpckl | _mm unpack |N/A A A A A

bw lo _pi8

_m punpckl | _mm unpack |N/A A A A A

wd lo_pil6

~m punpckl | _mm unpack |N/A A A A A

dq | o_pi32

~m paddb mm add_pi |N/A A A A A

_mpaddw [_mm add_pi [NA A A A A
16

_m paddd _mm add_pi |N/A A A A A
32

251

Intrinsic Alternate AcCross MMX(TM Streaming Streaming Itanium(TM
Name Name All 1A Technology |SIMD SIMD Architecture
Extensions |Extensions 2

_m paddsb | nm adds_p [NA A A A A
i 8

~m paddsw | nm adds_p |[N/A A A A A
i 16

_m paddusb | nm adds_p |N/A A A A A
u8

_m paddusw | nm adds_p |N/A A A A A
ulé

_mpsubb |_nmsub_pi [N/A A A A A
8

_mpsubw |_nm sub_pi [N/A A A A A
16

~m psubd _mm sub_pi |N/A A A A A
32

~m psubsb | nmm subs_p |[N/A A A A A
i 8

_m psubsw [_mm subs_p [NA A A A A
i 16

~m psubusb | nm subs_p |[N/A A A A A
us8

_m psubusw | mm subs_p |N/A A A A A
ulé

_m pmaddwd |_nm madd_p [N/A A A A C
i 16

~m prmul hw | mm rmul hi _ |N/A A A A A
pi 16

~mpmullw | mMmmullo_ |[NA A A A A
pi 16

_mpsllw [_mmsll_pi [NA A A A A
16

_mpsliwi [mmslli_p WA A A A A
i 16

_mpsllid _mm sl | _pi [NA A A A A
32

_mpslidi [_mmslli_p WA A A A A
i 32

_mpsllq mmsll_si |NA A A A A
64

252

Intrinsic Alternate AcCross MMX(TM Streaming Streaming Itanium(TM
Name Name All 1A Technology |SIMD SIMD Architecture
Extensions |Extensions 2

_mpslliqgi [_mmslli_s [NA A A A A
i 64

_mpsraw | _mmsra_pi [N/A A A A A
16

_mpsrawi |_nmsrai_p [NA A A A A
i 16

_m psrad _mm sra_pi [N/A A A A A
32

_mpsradi |_nmsrai_p [NA A A A A
i 32

_mpsrlw |_nmsrl_pi [NA A A A A
16

_mpsriwi [mmsrli_p [NA A A A A
i 16

_mpsrid _mm.srl_pi [NA A A A A
32

_mpsridi [_mmsrli_p [NA A A A A
i 32

_mpsrlq _mm.srl_si [NA A A A A
64

mpsrlqgi |_mMmsrli_s |[NA A A A A
i 64

~m pand _mm and_si |N/A A A A A
64

_m pandn _mm andnot |N/A A A A A
_Si 64

_m por _mm or_si 6 |N/A A A A A
4

_m _pxor _nmm xor _si [N/A A A A A
64

_m pcnpeqgb [_mm cnpeq_ WA A A A A
pi 8

_m pcnpeqw |_nm cnpeq_ [N/A A A A A
pi 16

_m pcnpeqd [_mm cnpeq_ [NA A A A A
pi 32

_m pcnpgtb | mm cnpgt _ |N/A A A A A
pi 8

253

Intrinsic Alternate AcCross MMX(TM Streaming Streaming Itanium(TM
Name Name All 1A Technology |SIMD SIMD Architecture
Extensions |Extensions 2

_m pcnpgtw |_nmm cnpgt _ [N/A A A A A
pi 16

_m pcnpgtd |_nm cnpgt _ [N/A A A A A
pi 32

_nm set zer N/A A A A A

0_si 64

_nm set _pi N/A A A A A

32

nm set _pi N/A A A A c

16

_nm set _pi N/A A A A c

8

mmsetl p N/A A A A A

i 32

mmsetl p N/A A A A A

i 16

mmsetl p N/A A A A A

i 8

_mmsetr_p N/A A A A A

i 32

_nmmsetr_p N/A A A A C

i 16

_nmm setr_p N/A A A A C

i 8

_mm enpt y is implemented in Itanium instructions as a NOP for source compatibility only.

254

Streaming SIMD Extensions Intrinsics Implementation

Regular Streaming SIMD Extensions intrinsics work on 4 32-bit single precision values. On Itanium(TM)-
based systemsbasic operations like add or compare will require two SIMD instructions. Both can be
executed in the same cycle so the throughput is one basic Streaming SIMD Extensions operation per
cycle or 4 32-bit single precision operations per cycle.

Key to the table entries

* A= Expected to give significant performance gain over non-intrinsic-based code equivalent.

* B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions but they offer no significant performance gain.

* C = Requires contorted implementation for particular microarchitecture. Will result in very poor

performance if used.

Intrinsic Alternate Across MMX(TM Streaming Streaming Itanium(TM
Name Name All 1A Technology |SIMD SIMD Architecture
Extensions |Extensions 2
mm add_ss N/A N/A B B B
_nm_add_ps N/A N/A A A A
mm sub_ss N/A N/A B B B
mm sub_ps N/A N/A A A A
_nmm nul _ss N/A N/A B B B
mm _nul _ps N/A N/A A A A
mm di v_ss N/A N/A B B B
_nmm di v_ps N/A N/A A A A
_mm.sqrt_s N/A N/A B B B
S
_mmsqrt_p N/A N/A A A A
S
_nm.rcp_ss N/A N/A B B B
_nm.rcp_ps N/A N/A A A A
nmmrsqrt N/A N/A B B B
Ss
mmrsqrt N/A N/A A A A
ps
mm nmion_ss N/A N/A B B B
_mm_nmion_ps N/A N/A A A A

255

Intrinsic Alternate AcCross MMX(TM Streaming Streaming Itanium(TM

Name Name All 1A Technology |SIMD SIMD Architecture
Extensions |Extensions 2

_nm_nmax_ss N/A N/A B B B

_nm_nmax_ps N/A N/A A A A

_mm_and_ps N/A N/A A A A

_mm andnot N/A N/A A A A

_ps

_nm.or_ps N/A N/A A A A

_nm xor _ps N/A N/A A A A

nm cnpeq N/A N/A B B B

XS

_nm _cnpeq_ N/A N/A A A A

ps

_mmecnplt _ N/A N/A B B B

SS

_mmecnplt _ N/A N/A A A A

ps

mmcnpl e N/A N/A B B B

S

nmm cnpl e N/A N/A A A A

ps

_nm _cnpgt _ N/A N/A B B B

Ss

_nm _cnpgt _ N/A N/A A A A

ps

nm cnpge N/A N/A B B B

XS

_nm _cnpge_ N/A N/A A A A

ps

_nm _cnpneq N/A N/A B B B

_Ss

_nm _cnpneq N/A N/A A A A

_ps

_mm cnpnl t N/A N/A B B B

_Sss

_mm cnpnl t N/A N/A A A A

_ps

_mm cnpnl e N/A N/A B B B

cCc

256

Intrinsic Alternate AcCross MMX(TM Streaming Streaming Itanium(TM

Name Name All 1A Technology |SIMD SIMD Architecture
Extensions |Extensions 2

_Ss

_nmm cnpnl e N/A N/A A A A

_ps

_nm_cnpngt N/A N/A B B B

_ss

_nm_cnpngt N/A N/A A A A

_ps

_nm _cnpnge N/A N/A B B B

_ss

_nm _cnpnge N/A N/A A A A

_ps

_nm cnpord N/A N/A B B B

_ss

_nm cnpord N/A N/A A A A

_ps

_nm_cnpuno N/A N/A B B B

rd_ss

_nm_cnpuno N/A N/A A A A

rd_ps

_mm coni eq N/A N/A B B B

_ss

mm comi |t N/A N/A B B B

_ss

mmconile N/A N/A B B B

_ss

_mm comi gt N/A N/A B B B

_Sss

_mm coni ge N/A N/A B B B

_ss

_mm coni ne N/A N/A B B B

g_sSs

_mm_ucom e N/A N/A B B B

g_sSs

_mm_ucomi | N/A N/A B B B

t_ss

_mm ucom | N/A N/A B B B

e_ss

_mm ucom g N/A N/A B B B

t_ss

257

Intrinsic Alternate AcCross MMX(TM Streaming Streaming Itanium(TM

Name Name All 1A Technology |SIMD SIMD Architecture
Extensions |Extensions 2

_mm ucom g N/A N/A B B B

e_ss

_mm _ucom n N/A N/A B B B

eq_ss

_nmm.cvt_ss [_mmcvtss_ [NA N/A A A B

2si si 32

_nmm.cvt_ps [_mm cvtps_ [NA N/A A A A

2pi pi 32

_mMmecvtt_s |_nmcvttss |[NA N/A A A B

s2si _Si 32

_mmecvtt_p [_mmcvttps [NVA N/A A A A

s2pi _pi 32

_mm.cvt_si [mmcvtsi 3 |NA N/A A A B

2ss 2_ss

_mm.cvt_pi [_mm cvtpi 3 |NA N/A A A C

2ps 2_ps

mmcvtpi 1l N/A N/A A A C

6_ps

_mm _cvt pul N/A N/A A A C

6_ps

_nm cvt pi 8 N/A N/A A A c

_ps

_mm cvt pu8 N/A N/A A A c

_ps

_nm cvt pi 3 N/A N/A A A c

2X2_ps

nm cvtps N/A N/A A A c

pi 16

nm cvtps N/A N/A A A c

pi 8

_nm nove_s N/A N/A A A A

S

_mm shuf fl N/A N/A A A A

e_ps

_mm _unpack N/A N/A A A A

hi _ps

_mm _unpack N/A N/A A A A

I o_ps

258

Intrinsic Alternate AcCross MMX(TM Streaming Streaming Itanium(TM

Name Name All 1A Technology |SIMD SIMD Architecture
Extensions |Extensions 2

_mm novehl N/A N/A A A A

_ps

_mm _novel h N/A N/A A A A

_ps

_nm _novena N/A N/A A A C

sk_ps

_nm get csr N/A N/A A A A

_nm set csr N/A N/A A A A

mm | oadh N/A N/A A A A

pi

_mm | oadl _ N/A N/A A A A

pi

mm | oad_s N/A N/A A A B

S

~mm |l oad_p |_mmloadl_|N/A N/A A A A

sl ps

mm| oad_p N/A N/A A A A

s

nm| oadu_ N/A N/A A A A

ps

nm| oadr _ N/A N/A A A A

ps

_nm st oreh N/A N/A A A A

_pi

_mm storel N/A N/A A A A

_pi

nm store N/A N/A A A A

SS

nm store N/A N/A A A A

ps

mm store | _mmstorel [NA N/A A A A

psl _ps

_nm storeu N/A N/A A A A

_ps

_nm st orer N/A N/A A A A

_ps

_nm set _ss N/A N/A A A A

259

Intrinsic Alternate AcCross MMX(TM Streaming Streaming Itanium(TM
Name Name All 1A Technology |SIMD SIMD Architecture
Extensions |Extensions 2

_mmset_ps [Mmsetl p |[NA N/A A A A

1 S

_mm set _ps N/A N/A A A A

_nmsetr_p N/A N/A A A A

S

_nmm set zer N/A N/A A A A

0_ps

_nm _pr ef et N/A N/A A A A

ch

_nm stream N/A N/A A A A

_pi

nm st ream N/A N/A A A A

_ps

_mm sfence N/A N/A A A A

_mpextrw |_nmmextrac [NA N/A A A A
t_pil6

_mpinsrw | mMminsert |N/A N/A A A A
_pi 16

_m pmaxsw |_nmm_max_pi [N/A N/A A A A
16

_m pmaxub |_nm_max_pu [N/A N/A A A A
8

_mpminsw |_nm.mn_pi [NA N/A A A A
16

_mpmnub [_mmmn_pu [NVA N/A A A A
8

_m pnovisk [_nmm novenma |N/A N/A A A C

b sk_pi 8

_m pnul huw [_mm nul hi _ [N/A N/A A A A
pul6

_m pshufw [mmshuffl |[NA N/A A A A
e_pi 16

~m nmasknmov | _mm maskno [N/A N/A A A C

q ve_si 64

—m pavgb _mm_ avg_pu [N/A N/A A A A
8

_m pavgw [_mm. avg_pu [N/A N/A A A A
16

260

Intrinsic Alternate AcCross MMX(TM Streaming Streaming Itanium(TM

Name Name All 1A Technology |SIMD SIMD Architecture
Extensions |Extensions 2

_m psadbw [mm sad_pu [N/A N/A A A A

261

Streaming SIMD Extensions 2 Intrinsics Implementation

Streaming SIMD Extensions 2 operate on 128-bit quantities with 64-bit double precision floating-point
values. The Intel® Itanium(TM) processor does not support parallel double precision computation, so
Streaming SIMD Extensions 2 are not implemented on Itanium-based systems.

Key to the table entries:
* A= Expected to give significant performance gain over non-intrinsic-based code equivalent.

* B = Non-intrinsic-based source code would be better; the intrinsic's implementation may map
directly to native instructions, but they offer no significant performance gain.

* C = Requires contorted implementation for particular microarchitecture. Will result in very poor
performance if used.

Intrinsic Across MMX(TM Streaming Pentium® 4 [tanium(TM
All 1A Technology SIMD Processor Architecture
Extenions Streaming
SIMD
Extensions 2

nmm add_sd N/A N/A N/A A N/A
_mm add_pd N/A N/A N/A A N/A
_mm sub_sd N/A N/A N/A A N/A
_mm sub_pd N/A N/A N/A A N/A
_nmm nul _sd N/A N/A N/A A N/A
_mm mul _pd N/A N/A N/A A N/A
_mmsqrt_sd [N/A N/A N/A A N/A
_mmsqrt_pd |NA N/A N/A A N/A
mm di v_sd N/A N/A N/A A N/A
_mm.di v_pd N/A N/A N/A A N/A
_mm m n_sd N/A N/A N/A A N/A
_nmm_mi n_pd N/A N/A N/A A N/A
_mm max_sd N/A N/A N/A A N/A
_mm _max_pd N/A N/A N/A A N/A
_mm and_pd N/A N/A N/A A N/A
_nmm_andnot _p [N/A N/A N/A A N/A
d

~mmor_pd N/A N/A N/A A N/A
_nmm xor _pd N/A N/A N/A A N/A

262

Intrinsic AcCross MMX(TM Streaming Pentium® 4 [tanium(TM

All 1A Technology SIMD Processor Architecture

Extenions Streaming
SIMD
Extensions 2

_nm cnpeq_sd [N/A N/A N/A A N/A
_mm cnpeq_pd |N/A N/A N/A A N/A
_mm cnpl t _sd [N/A N/A N/A A N/A
mmcnplt_pd |[NA N/A N/A A N/A
_mm cnpl e_sd |[N/A N/A N/A A N/A
_mm cnpl e_pd |[N/A N/A N/A A N/A
_mm cnpgt _sd |[N/A N/A N/A A N/A
_mm cnpgt _pd |[N/A N/A N/A A N/A
_mm cnpge_sd |[N/A N/A N/A A N/A
_mm cnpge_pd |[N/A N/A N/A A N/A
_nm_cnpneq_s [N/A N/A N/A A N/A
d
_nm cnpneq_p [N/A N/A N/A A N/A
d
mmcnpnlt_s [NA N/A N/A A N/A
d
_mmcnpnlt_p |[NA N/A N/A A N/A
d
_mm cnpnl e_s |N/A N/A N/A A N/A
d
_mm cnpnl e_p |[NA N/A N/A A N/A
d
_nm _cnpngt _s [N/A N/A N/A A N/A
d
_mm _cnpngt _p [N/A N/A N/A A N/A
d
_mm cnpnge_s [N/A N/A N/A A N/A
d
_mm_cnpnge_p [N/A N/A N/A A N/A
d
_nmm cnpord_p [N/A N/A N/A A N/A
d

N/A N/A N/A A N/A

_mm cnpord_s
d

263

Intrinsic AcCross MMX(TM Streaming Pentium® 4 [tanium(TM
All 1A Technology SIMD Processor Architecture
Extenions Streaming
SIMD
Extensions 2
_mm _crpunor d [N/A N/A N/A A N/A
_pd
_mm _crpunor d [N/A N/A N/A A N/A
_sd
_mm comi eq_s |N/A N/A N/A A N/A
d
_mmconm |t_s |[NA N/A N/A A N/A
mm comile_s [NA N/A N/A A N/A
d
_nm comi gt _s [N/A N/A N/A A N/A
d
_mm comi ge_s |N/A N/A N/A A N/A
d
_nm_comi neq_ [N/A N/A N/A A N/A
sd
_mm_ucom eq_ [N/A N/A N/A A N/A
sd
_mm.ucom |t _ |NA N/A N/A A N/A
sd
mm ucomi | e |[N/A N/A N/A A N/A
sd
_mm ucomi gt _ |N/A N/A N/A A N/A
sd
_mm_ucomi ge_ |N/A N/A N/A A N/A
sd
_mm_ucomi neq |N/A N/A N/A A N/A
_sd
_mm cvt epi 32 |N/A N/A N/A A N/A
_pd
_mm cvt pd_ep |[NA N/A N/A A N/A
i 32
_mm cvttpd_e |[NA N/A N/A A N/A
pi 32
_mm cvt epi 32 [N/A N/A N/A A N/A

_Pps

264

Intrinsic AcCross MMX(TM Streaming Pentium® 4 [tanium(TM
All 1A Technology SIMD Processor Architecture
Extenions Streaming
SIMD
Extensions 2
_nm cvt ps_ep [N/A N/A N/A A N/A
i 32
_mmcvttps_e [NA N/A N/A A N/A
pi 32
_mm cvt pd_ps |[N/A N/A N/A A N/A
_mm cvt ps_pd |[N/A N/A N/A A N/A
_nmm cvtsd_ss [N/A N/A N/A A N/A
_mm cvtss_sd [N/A N/A N/A A N/A
_mm cvtsd_si [NA N/A N/A A N/A
32
_mmcvttsd_s [NA N/A N/A A N/A
i 32
_mm cvtsi 32 [N/A N/A N/A A N/A
sd
_nmm cvt pd_pi [NA N/A N/A A N/A
32
_mm cvttpd_p (WA N/A N/A A N/A
i 32
nm cvt pi 32 [N/A N/A N/A A N/A
pd
_nmm_unpackhi [N/A N/A N/A A N/A
_pd
_mm _unpackl o [N/A N/A N/A A N/A
_pd
_mm _unpackl o [N/A N/A N/A A N/A
_pd
mm shuffle [NA N/A N/A A N/A
pd
mm | oad_pd [N/A N/A N/A A N/A
_mm | oadl_pd |[N/A N/A N/A A N/A
_mm | oadr _pd [N/A N/A N/A A N/A
_mm | oadu_pd |N/A N/A N/A A N/A
~mm | oad_sd [N/A N/A N/A A N/A
_mm | oadh_pd |N/A N/A N/A A N/A

265

Intrinsic AcCross MMX(TM Streaming Pentium® 4 [tanium(TM
All 1A Technology SIMD Processor Architecture
Extenions Streaming
SIMD
Extensions 2

nmm| oadl _pd [N/A N/A N/A A N/A
_mm set _sd N/A N/A N/A A N/A
mmsetl pd |N/A N/A N/A A N/A
_nm set _pd N/A N/A N/A A N/A
_mmsetr_pd |NA N/A N/A A N/A
nm set zero [N/A N/A N/A A N/A
pd

_mm nove_sd |N/A N/A N/A A N/A
_mm store_sd [NA N/A N/A A N/A
_nmm storel p [N/A N/A N/A A N/A
d

_mm store_pd |[NA N/A N/A A N/A
_nm storeu_p [N/A N/A N/A A N/A
_nm storer_p [NA N/A N/A A N/A
d

_nm storeh_p [N/A N/A N/A A N/A
d

_mm storel _p [NA N/A N/A A N/A
_mm add_epi 8 |N/A N/A N/A A N/A
_nm add_epi 1 [N/A N/A N/A A N/A
6

_mm add_epi 3 |N/A N/A N/A A N/A
2

mm add_si 64 |N/A N/A N/A A N/A
~mm add_epi 6 |N/A N/A N/A A N/A
4

_nm adds_epi [N/A N/A N/A A N/A
8

_nm adds_epi [N/A N/A N/A A N/A
16

_nm_adds_epu [N/A N/A N/A A N/A

8

266

Intrinsic AcCross MMX(TM Streaming Pentium® 4 [tanium(TM
All 1A Technology SIMD Processor Architecture
Extenions Streaming
SIMD
Extensions 2
_mm adds_epu |N/A N/A N/A A N/A
16
nmm avg_epu8 [N/A N/A N/A A N/A
mm avg_epul [N/A N/A N/A A N/A
6
_nm_nadd_epi [N/A N/A N/A A N/A
16
_nm_nax_epi 1 [N/A N/A N/A A N/A
6
_mm_max_epu8 [N/A N/A N/A A N/A
_nmm.min_epi 1 [N/A N/A N/A A N/A
6
_mm_m n_epu8 |N/A N/A N/A A N/A
_mm_mul hi _ep |[N/A N/A N/A A N/A
i 16
_mm_rmul hi _ep |[N/A N/A N/A A N/A
uleé
~mm mul |l o_ep |[NA N/A N/A A N/A
i 16
_mm_nul _su32 [N/A N/A N/A A N/A
_mm nul _epu3 [N/A N/A N/A A N/A
2
_nm sad_epu8 [N/A N/A N/A A N/A
_mm sub_epi 8 |N/A N/A N/A A N/A
_mm sub_epi 1 |N/A N/A N/A A N/A
6
_mm sub_epi 3 |N/A N/A N/A A N/A
2
_mm sub_si 64 [N/A N/A N/A A N/A
_mm sub_epi 6 [N/A N/A N/A A N/A
4
_mm subs_epi |NA N/A N/A A N/A
8
_mm subs_epi |NA N/A N/A A N/A

16

267

Intrinsic AcCross MMX(TM Streaming Pentium® 4 [tanium(TM
All 1A Technology SIMD Processor Architecture
Extenions Streaming
SIMD
Extensions 2
_mm subs_epu |N/A N/A N/A A N/A
8
_mm subs_epu |N/A N/A N/A A N/A
16
_mm and_si 12 [N/A N/A N/A A N/A
8
_mm andnot _s [N/A N/A N/A A N/A
i 128
_mm or _si 128 [N/A N/A N/A A N/A
_mm xor _si 12 [N/A N/A N/A A N/A
8
mmslli_sil|[NA N/A N/A A N/A
28
~mmslli_epi |[NA N/A N/A A N/A
16
~mm sl _epi 1l |NA N/A N/A A N/A
6
_mmslli_epi [NVA N/A N/A A N/A
32
_mm sl | _epi 3 [N/A N/A N/A A N/A
2
_mmslli_epi [NVA N/A N/A A N/A
64
_mm sl | _epi 6 [NV/A N/A N/A A N/A
4
_mm srai _epi |[NA N/A N/A A N/A
16
_mm.sra_epi 1l |[NA N/A N/A A N/A
6
_mm srai _epi |NA N/A N/A A N/A
32
_nmm sra_epi 3 [NA N/A N/A A N/A
2
mmsrli_sil|NA N/A N/A A N/A
28
~mmsrli_epi |[NA N/A N/A A N/A

16

268

Intrinsic AcCross MMX(TM Streaming Pentium® 4 [tanium(TM
All 1A Technology SIMD Processor Architecture
Extenions Streaming
SIMD
Extensions 2

~mmsrl _epi 1l |NA N/A N/A A N/A
6
_mmsrli_epi |[NA N/A N/A A N/A
32
_mmsrl _epi 3 |NA N/A N/A A N/A
_mmsrli_epi |[NA N/A N/A A N/A
64
_mm.srl _epi 6 [N/A N/A N/A A N/A
4
_nm_cnpeq_ep [NA N/A N/A A N/A
i 8
_nmm cnpeq_ep |NA N/A N/A A N/A
i 16
_nmm cnpeq_ep |NA N/A N/A A N/A
i 32
_nmm _cnpgt _ep [N/A N/A N/A A N/A
i 8
_mm cnpgt _ep [N/A N/A N/A A N/A
i 16
_mm cnpgt _ep [N/A N/A N/A A N/A
i 32
_mm cnpl t _ep (N/A N/A N/A A N/A
i 8
_mmecnplt_ep [NA N/A N/A A N/A
i 16
_mm cnpl t_ep (N/A N/A N/A A N/A
i 32

mn_cvt si 32 |NA N/A N/A A N/A

i 128

mn_cvt si 128 [N/A N/A N/A A N/A
_si 32

mm _packs_ep [N/A N/A N/A A N/A

16

mm _packs_ep [N/A N/A N/A A N/A

269

Intrinsic AcCross MMX(TM Streaming Pentium® 4 [tanium(TM
All 1A Technology SIMD Processor Architecture
Extenions Streaming
SIMD
Extensions 2
_mm packus_e |N/A N/A N/A A N/A
pi 16
_mm extract _ [N/A N/A N/A A N/A
epi 16
_mm.insert_e [NA N/A N/A A N/A
pi 16
_mm_novenmask [N/A N/A N/A A N/A
_epi 8
mm shuffle [NA N/A N/A A N/A
epi 32
_mm shuf fl eh [NA N/A N/A A N/A
i _epil6
_mm shufflel [NA N/A N/A A N/A
o_epi 16
_nmm_unpackhi [N/A N/A N/A A N/A
_epi 8
_mm _unpackhi [N/A N/A N/A A N/A
_epi 16
_mm _unpackhi [N/A N/A N/A A N/A
_epi 32
_mm _unpackhi [N/A N/A N/A A N/A
_epi 64
_mm _unpackl o [N/A N/A N/A A N/A
_epi 8
_nmm_unpackl o [N/A N/A N/A A N/A
_epi 16
_mm unpackl o |N/A N/A N/A A N/A
_epi 32
_mm unpackl o |N/A N/A N/A A N/A
_epi 64
_nm nove_epi [N/A N/A N/A A N/A
64
_mm _novpi 64_ |N/A N/A N/A A N/A
epi 64
_mm_novepi 64 |N/A N/A N/A A N/A

_pi 64

270

Intrinsic AcCross MMX(TM Streaming Pentium® 4 [tanium(TM
All 1A Technology SIMD Processor Architecture
Extenions Streaming
SIMD
Extensions 2
mm | oad_si 1 [N/A N/A N/A A N/A
28
_mm | oadu_si [N/A N/A N/A A N/A
128
_mm | oadl _ep |[N/A N/A N/A A N/A
i 64
_nmm set_epi 6 |[N/A N/A N/A A N/A
4
_mm set _epi 3 |N/A N/A N/A A N/A
2
_nm set _epi 1 [N/A N/A N/A A N/A
6
_mm set _epi 8 |N/A N/A N/A A N/A
mm setl _epi [N/A N/A N/A A N/A
64
mm setl _epi [N/A N/A N/A A N/A
32
_mm setl_epi [NA N/A N/A A N/A
16
_nmm setl_epi [NA N/A N/A A N/A
8
_nm setr_epi [NA N/A N/A A N/A
64
_nm setr_epi [NA N/A N/A A N/A
32
_mm setr_epi [N/A N/A N/A A N/A
16
mm setr_epi [N/A N/A N/A A N/A
8
mm set zero [N/A N/A N/A A N/A
si 128
_mm store_si [NA N/A N/A A N/A
128
_mMm storeu_s [NA N/A N/A A N/A
i 128
_mm storel _e |[NA N/A N/A A N/A

pi 64

271

Intrinsic AcCross MMX(TM Streaming Pentium® 4 [tanium(TM
All 1A Technology SIMD Processor Architecture
Extenions Streaming
SIMD
Extensions 2
_mm _masknove |N/A N/A N/A A N/A
u_si 128
_nmm streamp [N/A N/A N/A A N/A
d
_nmm stream.s [N/A N/A N/A A N/A
i 128
~mmcl flush [NA N/A N/A A N/A
~mm | f ence N/A N/A N/A A N/A
_nm nf ence N/A N/A N/A A N/A
_nmm stream s [N/A N/A N/A A N/A
i 32
_nmm _pause N/A N/A N/A A N/A

272

Intel] C++ Class Libraries

Introduction to the Class Libraries

Welcome to the Class Libraries

The Inteld C++ Class Libraries enable Single-Instruction, Multiple-Data (SIMD) operations. The principle
of SIMD operations is to exploit microprocessor architecture through parallel processing. The effect of
parallel processing is increased data throughput using fewer clock cycles. The objective is to improve
application performance of complex and computation-intensive audio, video, and graphical data bit
streams.

Hardware and Software Requirements

You must have the Intel® C++ Compiler version 4.0 or higher installed on your system to use the class
libraries. The Intel C++ Class Libraries are functions abstracted from the instruction extensions available
on Intel processors as specified in the table that follows.

Processor Requirements for Use of Class Libraries

Header File Extension Set Available on These Processors

ivec. h MMX(TM) technology Pentium® with MMX(TM) technology, Pentium II, Pentium Ill, Pentium 4, and
Itanium(TM) processors

fvec. h Streaming SIMD Extensions Pentium Ill, Pentium 4 and Itanium processors

dve. ch Streaming SIMD Extensions 2 [Pentium 4 processor only

About the Classes

The Intel® C++ Class Libraries for SIMD Operations include:
* Integer vector (I vec) classes
* Floating-point vector (Fvec) classes

You can find the definitions for these operations in three header files: i vec. h, f vec. h, and dvec. h.
The classes themselves are not partitioned like this. The classes are named according to the underlying
type of operation. The header files are partitioned according to architecture: i vec. h is specific to
architectures with MMX™ technology; f vec. h is specific to architectures with Streaming SIMD
Extensions; dvec. h is specific to architectures with Streaming SIMD Extensions 2. Streaming SIMD
Extensions 2 intrinsics cannot be used on Itanium™-based systems. The nmtl ass. h header file
includes the classes that are usable on the Itanium architecuture.

This documentation is intended for programmers writing code for the Intel Architecture, particularly code
that would benefit from the use of SIMD instructions. You should be familiar with C++ and the use of C++
classes.

273

Technical Overview

Details About the Libraries

The Intel® C++ Class Libraries for SIMD Operations provide a convenient interface to access the
underlying instructions for processors as specified in Processor Requirements for Use of Class Libraries.
These processor-instruction extensions enable parallel processing using the single instruction-multiple
data (SIMD) technique as illustrated in the following figure.

SIMD Data Flow

A3 A= A1 AOD
B3 B2 B1 BO

v

lIA3cpB3AZ0opB2 A1opB1A0OPBO

Performing four operations with a single instruction improves efficiency by a factor of four for that
particular instruction.

These new processor instructions can be implemented using assembly inlining, intrinsics, or the C++
SIMD classes. Compare the coding required to add four 32-bit floating-point values, using each of the
available interfaces:

Comparison Between Inlining, Intrinsics and Class Libraries

Assembly Inlining Intrinsics SIMD Class Libraries

_ ml28 a,b,c; __asm{ [#include <mrintrin.h> ... |#include <fvec.h> ...
novaps xmmD, b novaps ~ ml28 a,b,c; a = F32vec4 a,b,c; a = b +c;
xmml, ¢ addps xnmD, xmil _mm add_ps(b, c); ..
nmovaps a, xnmD } ...

The table above shows an addition of two single-precision floating-point values using assembly inlining,
intrinsics, and the libraries. You can see how much easier it is to code with the Intel C++ SIMD Class
Libraries. Besides using fewer keystrokes and fewer lines of code, the notation is like the standard
notation in C++, making it much easier to implement over other methods.

274

C++ Classes and SIMD Operations

The usage of C++ classes for SIMD operations is based on the concept of operating on arrays, or vectors
of data, in parallel. Consider the addition of two vectors, A and B, where each vector contains four
elements. Using the integer vector (I vec) class, the elements Al i] and B[i] from each array are
summed as shown in the following example.

Typical Method of Adding Elements Using a Loop

short a[4], b[4], c[4];

for (i=0; i<4; i++) /* needs four iterations */

c[i] =a[i] + b[i]; /* returns c[0], c[1], c[2], c[3] */

The following example shows the same results using one operation with lvec Classes.

SIMD Method of Adding Elements Using Ivec Classes

sl sl6vec4 ivecA, ivecB, ivec C, /*needs one iteration */
ivecC = ivecA + ivecB; /*returns ivecCO, ivecCl, ivecC2, ivecC3 */

Available Classes
The Intel® C++ SIMD classes provide parallelism, which is not easily implemented using typical

mechanisms of C++. The following table shows how the Intel C++ SIMD classes use the classes and
libraries.

SIMD Vector Classes

Instruction Set Class Sighedness |Data Type [Size |Elements |Header File

MMX(TM) technology (available for ||64vecl unspecified m64 64 1 ivec.h

IA-32- and Itanium(TM)-based —

systems)
I132vec2 unspecified int 32 2 ivec.h
Is32vec2 |signed int 32 2 ivec.h
lu32vec2 |unsigned int 32 2 ivec.h
I16vecsd unspecified short 16 4 ivec.h
Isl6vec4 |signed short 16 4 ivec.h
lul6vecd |unsigned short 16 4 ivec.h
I8vec8 unspecified char 8 8 ivec.h
Is8vec8 signed char 8 8 ivec.h
lu8vec8 unsigned char 8 8 ivec.h

275

Instruction Set Class Sighedness |Data Type [Size |Elements |Header File

Streaming SIMD Extensions F32vec4 signed float 32 4 fvec.h

(available for IA-32- and Itanium-

based systems)
F32vecl |[signed float 32 1 fvec.h

Streaming SIMD Extensions 2 F64vec2 signed double 64 2 dvec.h

(available for 1A-32-based systems

only)
[128vecl |unspecified m128i 128 1 dvec.h
I64vec2 unspecified long int 64 4 dvec.h
Is64vec2 [signed long int 64 4 dvec.h
lu64vec2 |unsigned long int 32 4 dvec.h
I132vec4 unspecified int 32 4 dvec.h
Is32vec4 |signed int 32 4 dvec.h
lu32vec4 |unsigned int 32 4 dvec.h
I16vec8 unspecified int 16 8 dvec.h
Isl6vec8 |signed int 16 8 dvec.h
lul6vec8 |unsigned int 16 8 dvec.h
I8vecl6 unspecified char 8 16 dvec.h
Is8vecl6 |[signed char 8 16 dvec.h
luBvecl6 |unsigned char 8 16 dvec.h

Most classes contain similar functionality for all data types and are represented by all available intrinsics.
However, some capabilities do not translate from one data type to another without suffering from poor
performance, and are therefore excluded from individual classes.

"f)Note

Intrinsics that take immediate values and cannot be expressed easily in classes are not implemented.
(For example, _mm shuffle_ps, _nmm shuffle_pi 16, _mmextract_pi 16, _nm.insert _pi 16).

276

Access to Classes Using Header Files

The required class header files are installed in the include directory with the Intel® C++ Compiler. To
enable the classes, use the #i ncl ude directive in your program file as shown in the table that follows.

Include Directives for Enabling Classes

Instruction Set Extension Include Directive

MMX Technology #i ncl ude <ivec. h>
Streaming SIMD Extensions #i ncl ude <fvec. h>
Streaming SIMD Extensions 2 #i ncl ude <dvec. h>

Each succeeding file from the top down includes the preceding class. You only need to include f vec. h if
you want to use both the lvec and Fvec classes. Similarly, to use all the classes including those for the
Streaming SIMD Extensions 2, you need only to include the dvec. h file.

Usage Precautions

When using the C++ classes, you should follow some general guidelines. More detailed usage rules for
each class are listed in Integer Vector Classes, and Floating-point Vector Classes.

Clear MMX Registers

If you use both the Ivec and Fvec classes at the same time, your program could mix MMX instructions,
called by Ivec classes, with Intel x87 architecture floating-point instructions, called by Fvec classes.
Floating-point instructions exist in the following Fvec functions:

fvec constructors
debug functions(cout and element access)

rsgrt_nr

ﬂNote

MMX registers are aliased on the floating-point registers, so you should clear the MMX state with
the EMVS instruction intrinsic before issuing an x87 floating-point instruction, as in the following
example.

ivecA = ivecA & ivecB; [* Ivec logical operation that uses MMX instructions */
empty (); [* clear state */
cout << f32vec4a; [* F32vec4 operation that uses x87 floating-point instructions */

&Caution

Failure to clear the MMX registers can result in incorrect execution or poor performance due to an
incorrect register state.

277

Follow EMMS Instruction Guidelines

Intel strongly recommends that you follow the guidelines for using the EMMS instruction. Refer to this
topic before coding with the Fvec and Ivec classes.

Capabilities
The fundamental capabilities of each C++ SIMD class include:
e computation
* horizontal data motion
e branch compression/elimination
* caching hints

Understanding each of these capabilities and how they interact is crucial to achieving desired results.

Computation

The SIMD C++ classes contain vertical operator support for most arithmetic operations, including shifting
and saturation.

Computation operations include: +, -, *, /, reciprocal (rcp and r cp_nr), square root (sqrt),
reciprocal square root (rsqrt andrsqrt_nr).

Operations r cp and r sqrt are new approximating instructions with very short latencies that produce
results with at least 12 bits of accuracy. Operations r cp_nr and rsqrt _nr use software refining
techniques to enhance the accuracy of the approximations, with a minimal impact on performance. (The
"nr" stands for Newton-Raphson, a mathematical technique for improving performance using an
approximate result.)

Horizontal Data Support

The C++ SIMD classes provide horizontal support for some arithmetic operations. The term "horizontal"
indicates computation across the elements of one vector, as opposed to the vertical, element-by-element
operations on two different vectors.

The add_hori zont al , unpack_| owand pack_sat functions are examples of horizontal data support.
This support enables certain algorithms that cannot exploit the full potential of SIMD instructions.

Shuffle intrinsics are another example of horizontal data flow. Shuffle intrinsics are not expressed in the
C++ classes due to their immediate arguments. However, the C++ class implementation enables you to
mix shuffle intrinsics with the other C++ functions. For example:

F32vec4 fveca, fvecb, fvecd,
fveca += fvechb;
fvecd = _mmshuffle_ps(fveca, fvech, 0);

Typically every instruction with horizontal data flow contains some inefficiency in the implementation. If
possible, implement your algorithms without using the horizontal capabilities.

278

Branch Compression/Elimination

Branching in SIMD architectures can be complicated and expensive, possibly resulting in poor
predictability and code expansion. The SIMD C++ classes provide functions to eliminate branches, using
logical operations, max and min functions, conditional selects, and compares. Consider the following
example:

short a[4], b[4], c[4];
for (i1=0; i<4; i++)
c[i] =a[i] >b[i] ? a[i] : b[i];

This operation is independent of the value of i . For each i , the result could be either A or B depending on
the actual values. A simple way of removing the branch altogether is to use the sel ect _gt function, as
follows:

| slévecd a, b, ¢
c = select_gt(a, b, a, b)

Caching Hints

Streaming SIMD Extensions provide prefetching and streaming hints. Prefetching data can minimize the
effects of memory latency. Streaming hints allow you to indicate that certain data should not be cached.
This results in higher performance for data that should be cached.

Integer Vector Classes

Integer Vector Classes

The Ivec classes provide an interface to SIMD processing using integer vectors of various sizes. The
class hierarchy is represented in the following figure.

Ivec Class Hierarchy

L
1] | | |

[164vect | [120vacz| | nwece| | iBvecs | |I123'.-’e-:1| |154','e|:2| [13zvec | [1eveca | [1gvects |

I=32yeel| |ludPvec? |=32vescd | | ludPvecd

lsb4veca

AR

279

The M64 and M128 classes define the __n64 and __ ml28i data types from which the rest of the Ivec
classes are derived. The first generation of child classes are derived based solely on bit sizes of 128, 64,
32, 16, and 8 respectively for the | 128vecl, | 64vecl, 164vec?2, | 32vec2, | 32vec4, | 16vec4,

| 16vec8, | 8vecl6, and | 8vec8 classes. The latter seven of the these classes require specification of
signedness and saturation.

&Caution

Do not intermix the M64 and M128 data types. You will get unexpected behavior if you do.

The signedness is indicated by the s and u in the class names:

| s64vec?
|l ué4vec?
| s32vec4
|l u32vec4
| sl6évec8
lulévec8
| s8vecl6
| u8vecl6
| s32vec?2
Il u32vec?
| sl6vec4
lulévec4d
| s8vec8

| u8vecs8

Terms, Conventions, and Syntax

The following are special terms and syntax used in this chapter to describe functionality of the classes
with respect to their associated operations.

Ivec Class Syntax Conventions

The name of each class denotes the data type, signedness, bit size, number of elements using the
following generic format:

<t ype><si gnedness><bhi t s>vec<el enent s>

{F|l 1} {s|u}){64] 32| 16| 8} vec{ 8| 4] 2] 1}

where

type indicates floating point (F) or integer (|)

signedness indicates signed ('S) or unsigned (U). For the Ivec class, leaving this field blank indicates an intermediate

class. There are no unsigned Fvec classes, therefore for the Fvec classes, this field is blank.

bits specifies the number of bits per element

elements specifies the number of elements

280

Special Terms and Conventions

The following terms are used to define the functionality and characteristics of the classes and operations
defined in this manual.

Nearest Common Ancestor -- This is the intermediate or parent class of two classes of the
same size. For example, the nearest common ancestor of lu8vec8 and Is8vec8 is 18vec8. Also,
the nearest common ancestor between lu8vec8 and 116vec4 is M64.

Casting -- Changes the data type from one class to another. When an operation uses different
data types as operands, the return value of the operation must be assigned to a single data type.
Therefore, one or more of the data types must be converted to a required data type. This
conversion is known as a typecast. Sometimes, typecasting is automatic, other times you must
use special syntax to explicitly typecast it yourself.

Operator Overloading -- This is the ability to use various operators on the same user-defined
data type of a given class. Once you declare a variable, you can add, subtract, multiply, and
perform a range of operations. Each family of classes accepts a specified range of operators, and
must comply by rules and restrictions regarding typecasting and operator overloading as defined

in the header files. The following table shows the notation used in this documention to address
typecasting, operator overloading, and other rules.

Class Syntax Notation Conventions

Class Name

Description

I[s|u][N]vec[N]

Any value except | 128vec1 nor I64vecl

164vecl

__mM64 data type

I[s|u]64vec2

two 64-bit values of any signedness

I[s|u]32vec4

four 32-bit values of any signedness

I[s|u]8vecl6

eight 16-bit values of any signedness

I[s|u]16vec8

sixteen 8-bit values of any signedness

I[s|u]32vec2

two 32-bit values of any signedness

I[s|u]16vec4

four 16-bit values of any signedness

I[s|u]8vec8

eight 8-bit values of any signedness

281

Rules for Operators

To use operators with the lvec classes you must use one of the following three syntax conventions:
[lvec_Cass] R=] lvec_ Cass] A operator][Ivec_ Cass] B

Example 1: 164vecl R = 164vecl A & 164vecl B;

[lvec_ Class] R =[operator] ([Ivec_ Cass] A lvec_Cass] B)

Example 2: I64vecl R = andnot(I64vecl A, I64vecl B);

[lvec_ Class] R[operator]=] lvec_ Class] A

Example 3: I164vecl R &= 164vecl A;

[operator] an operator (for example, &, |, or ™)

[Ivec_O ass] an lvec class

R, A, B variables declared using the pertinent Ivec classes

The table that follows shows automatic and explicit sign and size typecasting. "Explicit" means that it is

illegal to mix different types without an explicit typecasting. "Automatic" means that you can mix types
freely and the compiler will do the typecasting for you.

Summary of Rules Major Operators

Operators Sign Typecasting Size Typecasting Other Typecasting
Requirements
Assignment N/A N/A N/A
Logical Automatic Automatic Explicit typecasting is required
(to left) for different types used in non-

logical expressions on the right
side of the assignment.

See Syntax Usage for Logical
Operators example.

Addition and Subtraction Automatic Explicit N/A
Multiplication Automatic Explicit N/A
Shift Automatic Explicit Casting Required to ensure

arithmetic shift.

Compare Automatic Explicit Explicit casting is required for
signed classes for the less-than
or greater-than operations.

Conditional Select Automatic Explicit Explicit casting is required for
signed classes for less-than or
greater-than operations.

282

Data Declaration and Initialization

The following table shows literal examples of constructor declarations and data type initialization for all
class sizes. All values are initialized with the most significant element on the left and the least significant

to the right.

Declaration and Initialization Data Types for Ivec Classes

Operation

Class

Syntax

Declaration

M128

1128vecl A; lu8vecl6 A;

Declaration

M64

164vecl A; lu8vecl6 A;

___m128 Initialization

M128

1128vecl A(__m128 m);
lulévec8(m128 m);

___mM64 Initialization

M64

64vecl A(__m64 m);lu8vec8
A(__m64 m);

___int64 Initialization

M64

I64vecl A= __ int64 m; lu8vec8 A
= int64 m;

int i Initialization

M64

I64vecl A =inti; lu8vec8 A = int i;

int initialization

132vec2

I132vec2 A(int Al, int AO);

| s32vec2 A(signed int
Al, signed int AO);

| u32vec2 A(unsigned int
Al, unsigned int AO);

int Initialization)

132vecs

I32vec4 A(short A3, short A2,
short A1, short AO);

| s32vec4 A(signed short
A3, ..., signed short
AO0) ;

| u32vec4 A(unsi gned
short A3, ..., unsigned
short A0);

short int Initialization

116vec4

I16vec4 A(short A3, short A2,
short A1, short AO);

| sl6vecd A(signed short
A3, ..., signed short
A0) ;

lul6vec4 A(unsigned
short A3, ..., unsigned
short AO0);

short int Initialization

116vec8

I16vec8 A(short A7, short A6, ...,
short A1, short AO);

| sl6vec8 A(signed A7,
..., signed short AQ);

| ul6évec8 A(unsi gned
short A7, ..., unsigned
short AO0);

char Initialization

18vec8

I8vec8 A(char A7, char A6, ...,
char Al, char A0);

283

Operation Class Syntax
| s8vec8 A(signed char
A7, ..., signed char A0);
| u8vec8 A(unsi gned char
A7, ..., unsigned char
A0) ;
char Initialization I8vecl6

I8vecl6 A(char A15, ..., char AO);
| s8vecl6 A(signed char

Al5, ..., signed char
AO) ;

| u8vecl6 A(unsigned char
Al15, ..., unsigned char
A0) ;

Assignment Operator

Any Ivec object can be assigned to any other Ivec object; conversion on assignment from one Ivec object
to another is automatic.

Assignment Operator Examples

| slévecd A;
| s8vec8 B;
| 64vecl C;

A

B=C /* assign I64vecl to |s8vec8 */

vy]
1

A& G

284

B; /* assign Is8vec8 to |Isl6vecd */

/* assign M4 result of

to | s8vec8 */

Logical Operators

The logical operators use the symbols and intrinsics listed in the following table.

Bitwise Operator Symbols Syntax Usage
Operation
Standard w/ assign Standard w/assign Corresponding

Intrinsic

AND & &= R=A&B R&=A _nmm_and_si 64
mm and_si 128

OR = R=A|B RI=A mm and_si 64
mm and_si 128

XOR A = R =A"B RA=A _nmm_and_si 64
mm and_si 128

ANDNOT andnot N/A R=AandnotB |N/A _mm and_si 64
_nmm_and_si 128

Logical Operators and Miscellaneous Exceptions.

/* A and B converted to M4. Result assigned to |u8vec8.*/
| 64vecl A
| s8vec8 B;

| u8vec8 C,
C=A2& B

/* Same size and signedness operators return the nearest conmpbn ancestor.*/
| 32vec2 R = Is32vec2 A " |lu32vec?2 B;

/* A&B returns M4, which is cast to |lu8vec8. */

C = lu8vec8(A&B) + C;

When A and B are of the same class, they return the same type. When A and B are of different classes,
the return value is the return type of the nearest common ancestor.

The logical operator returns values for combinations of classes, listed in the following tables, apply when
A and B are of different classes.

Ivec Logical Operator Overloading

Return (R) |AND OR XOR NAND A Operand B Operand

I64vecl R & | " andnot [[s|u]64vec2 A I[s|u]64vec2 B
I64vec2 R & | " andnot [[s|u]64vec2 A I[s|u]64vec2 B
I32vec2 R & | A andnot [[s|u]32vec2 A I[s|u]32vec2 B

285

Return (R) |AND OR XOR NAND A Operand B Operand
I32vec4 R & [" andnot [[s|u]32vecd A I[s|u]32vec4 B
I16vecd R & | n andnot [[s|u]l6vecd A I[s|lu]l6vec4 B
I16vec8 R & [" andnot [[s|u]16vec8 A I[s|u]16vec8 B
I8vecs R & I " andnot [[s|u]8vec8 A I[s|u]8vec8 B
I8vecl6 R & | A andnot [[s|u]8vecl6 A I[s|u]8vecl6 B

For logical operators with assignment, the return value of Ris always the same data type as the pre-
declared value of R as listed in the table that follows.

Ivec Logical Operator Overloading with Assignment

Return Type Left Side (R) |AND OR XOR Right Side (Any Ivec Type)
1128vecl 1128vecl R &= I= = I[s|u][N]vec[N] A;
I64vecl I64vecl R &= |= A= I[s|u][N]vec[N] A;
164vec2 I64vec2 R &= |= A= I[s|u][N]vec[N] A;
I[X]32vec4 IX]32vec4 R &= = = I[s|u][N]vec[N] A;
I[X]32vec2 IX]32vec2 R &= = = I[s|u][N]vec[N] A;
I[x]16vecs I[x]16vec8 R &= = = I[s|u][N]vec[N] A;
I[x]16vecd I[x]16vecd R &= = "= I[s|u][N]vec[N] A;
I[x]8vec16 I[x]8vec16 R &= = "= I[s|u][N]vec[N] A;
I[x]8vecs I[x]8vecs R &= I= n= I[s|u][N]vec[N] A;

Addition and Subtraction Operators

The addition and subtraction operators return the class of the nearest common ancestor when the right-
side operands are of different signs. The following code provides examples of usage and miscellaneous
exceptions.

Syntax Usage for Addition and Subtraction Operators

/* Return nearest commpbn ancestor | 16vecd */

t ype1
| sl6évecd A;

lulévec4d B;

286

| 16vecd C,
C=A+ B
/* Returns type |eft-hand operand type */
| sl6vecd A
lulévec4d B;

A += B;

/* Explicitly convert B to Isl6vecd */
| sl6évecd A C

lu32vec24 B

C=A+C

C = A+ (lsl6vecd)B;

Addition and Subtraction Operators with Corresponding Intrinsics

Operation [Symbols |Syntax Corresponding Intrinsics

Addition + R=A+B _mm add_epi 64
+= R+=A _mm _add_epi 32
_nmm add_epi 16
_mm _add_epi 8
mm add_pi 32
mm add_pi 16
_mm add_pi 8

o
> >
@

Subtraction _nmm sub_epi 64
_mm sub_epi 32
_mm sub_epi 16
_mm sub_epi 8
_mm _sub_pi 32
_mm sub_pi 16
_mm sub_pi 8

peipy)

287

The following table lists addition and subtraction return values for combinations of classes when the right
side operands are of different signedness. The two operands must be the same size, otherwise you must
explicitly indicate the typecasting.

Addition and Subtraction Operator Overloading

Return Value (R) |Available Operators Right Side Operands
Add Sub A B

| 64vec2 R + - I[s|u]64vec2 A |I[s|u]64vec2 B
| 32vec4 R + - I[s|]u]32vecd A |I[s|u]32vecd B
| 32vec2 R + - I[s]u]32vec2 A |I[s]|u]32vec2 B
| 16vec8 R + - I[s|]u]l6vec8 A |I[s|u]l6vec8 B
| 16vecd R + - I[s|u]16vecd A |I[s|u]1l6vecd B
| 8vec8 R + - I[s]u]8vec8 A I[s|u] 8vec8 B

| 8vecl6 R + - I[s]u]8vec2 A [[s|u] 8vecl6 B

The following table shows the return data type values for operands of the addition and subtraction
operators with assignment. The left side operand determines the size and signedness of the return value.
The right side operand must be the same size as the left operand; otherwise, you must use an explicit
typecast.

Addition and Subtraction with Assignment

Return Value (R) Left Side (R) Add Sub Right Side (A)

I [x] 32vec4 I [x] 32vec2 R |+= -= I [s|u] 32vecd A
I [x] 32vec2 R I[x] 32vec2 R |+= -= I [s]|u] 32vec2 A
I [X] 16vec8 I [x] 16vec8 += -= I[s|u] 16vec8 A
I [x] 16vec4 I [x] 16vec4 += = I[s|u] 16vecd A
I [x] 8vecl6 I [x] 8vecl6 += -= I [s|u] 8Bvecl6 A
I [x] 8vec8 I [x] 8vec8 += -= I [s]|u] 8Bvec8 A;

288

Multiplication Operators

The multiplication operators can only accept and return data types from the | [s| u] 16vec4 or
I [s] u] 16vec8 classes, as shown in the following example.

Syntax Usage for Multiplication Operators
/* Explicitly convert B to |Isl6vecd */

I sl6vecd A G

lu32vec?2 B;

C=A*C

C

A * (lsl6vecd)B;

/* Return nearest comobn ancestor type, |16vecd */

| sl6vecd A

lulévec4d B;

| 16vecd C

C=A+ B

/* The mul _high and mul _add functions take |Isl6vec4 data only */
I sl6vecd A B, C D

C

mul _hi gh(A, B);

D

nmul _add(A, B);

289

Multiplication Operators with Corresponding Intrinsics

Operation Symbols Syntax Usage Intrinsic
Multiplication L R=A*B _mm nul | o_pi 16
R*=A _mm mul | o_epi 16
mul _hi gh [N/A R = mul _hi gh(A, B) - mm mul hi _pi 16
_mm_mul hi _epi 16
mul _add [N/A R = mul _hi gh(A, B) _mm madd_pi 16
- mm _nmadd_epi 16

The multiplication return operators always return the nearest common ancestor as listed in the table that
follows. The two operands must be 16 bits in size, otherwise you must explicitly indicate typecasting.

Multiplication Operator Overloading

R Mul A B

| 16vecd R * [[s|u] l6vecd A I[s|u]16vecd B
| 16vec8 R * I[s]u] 16vec8 A I[s|u]l6vec8 B
| slévecd R mul _add | slévecd A | slévecd4 B

| sl6évec8 mul _add | sl6vec8 A | slévec8 B

| s32vec2 R mul _hi gh I slévecd A I slévec4 B

| s32vecd4 R mul _hi gh sl6vec8 A | sl6vec8 B

The following table shows the return values and data type assignments for operands of the multiplication
operators with assignment. All operands must be 16 bytes in size. If the operands are not the right size,
you must use an explicit typecast.

Multiplication with Assignment

Return Value (R)

Left Side (R)

Right Side (A)

I [X] 16vec8

I [x] 16vec8

I[s]u] 16vec8 A

I [x] 16vec4

I [x] 16vec4

I[s]|u] 16vecd A

290

Shift Operators

The right shift argument can be any integer or Ivec value, and is implicitly converted to a M64 data type.

The first or left operand of a << can be of any type except | [s| u] 8vec| 8| 16]
Example Syntax Usage for Shift Operators

/* Automatic size and sign conversion */

I slévecd A C

lu32vec2 B;

C=A

/* A&B returns |16vec4, which nmust be cast to lul6vec4
to ensure logical shift, not arithnmetic shift */

| sl6évecd A, G

lulévecd4 B, R

R = (lul6vecd) (A & B) G

/* A&B returns | 16vec4, which nmust be cast to |sl6vec4d
to ensure arithnmetic shift, not logical shift */

R = (Isl6vecd) (A & B) G

Shift Operators with Corresponding Intrinsics

Operation Symbols Syntax Usage Intrinsic
Shift Left << R=A<<B mm sl | _si64
&= R&=A _mm sl li_si64
_mm sl | _pi 32
mmslli_pi32
mm sl _pi 16
mmslli_pil6
Shift Right >> R=A>>B mm srl _si 64
R>>=A mmsrli_si64
mm srl _pi 32
mmsrli_pi32
mm srl _pi 16
mmsrli_pil6
mm sra_pi 32
mm srai _pi 32
_mm.sra_pi 16
nm srai _pi 16

Right shift operations with signed data types use arithmetic shifts. All unsigned and intermediate classes
correspond to logical shifts. The table below shows how the return type is determined by the first

argument type.

201

Shift Operator Overloading

Operation |R Right Shift Left Shift A B

Logical | 64vecl >> >>= << <<= |l 64vecl A | 64vecl B;

Logical | 32vec?2 >> >>= << <<= || 32vec2 A | 32vec2 B;

Avrithmetic | s32vec2 |>> >>= << <<= [l s32vec2 A I[s|ul][Nvec[N B;
Logical lu32vec2 [>> >>= << <<= |[lu32vec2 A I[s|]u]l[Nvec[N B;
Logical | 16vec4d >> >>= << <<= |l 16vecd A | 16vec4 B

Arithmetic | slévecd [>> >>= << <<= |l sl6vecd A I[s|]u]l[Nvec[N B;
Logical lulévecd |>> >>= << <<= |[lul6vecd A I[s|ul [N vec[N B;

Comparison Operators

The equality and inequality comparison operands can have mixed signedness, but they must be of the
same size. The comparison operators for less-than and greater-than must be of the same sign and size.

Example of Syntax Usage for Comparison Operator

/* The nearest conmon ancestor is returned for conpare
for equal /not-equal operations */

| u8vec8 A,

| s8vec8 B;

| 8vec8 C;

C = cnpneq(A B);

/* Type cast needed for different-sized elenments for
equal / not - equal conparisons */

lu8vec8 A, C

| sl6vec4d B;

C = cnpeq(A, (l1uB8vec8)B);

/* Type cast needed for sign or size differences for
| ess-than and greater-than conparisons */

lulévecd A

292

| slévec4 B,

C

C

Inequality Comparison Symbols and Corresponding Intrinsics

G

cnpge((1sl6vecd) A B);

cnpgt (B, O) ;

Compare For [Operators Syntax Intrinsic
Equality cnpeq R = cnpeq(A, B) [nmcnpeq_pi 32
. mm cnpeq_pi 16
_mm _cnpeqg_pi 8
Inequality cnpneq R = cnpneq(A, B) [_mm cnpeq_pi 32 _nm_andnot _si 64
- mm cnpeq_pi 16
_mm _cnpeqg_pi 8
Greater Than cnpgt R = cnpgt (A, B) | _mmcnpgt_pi 32
- mm cnpgt _pi 16
_mm cnpgt_pi 8
Greater Than cnpge R = cnpge(A, B) [nmcnpgt_pi 32 _nmm_andnot _si 64
or Equal To _mm cnpgt _pi 16
_mm cnpgt_pi 8
Less Than cnpl t R=cnplt(A B) | _mmcnpgt_pi32
- mm _cnpgt _pi 16
_mm cnpgt_pi 8
Less Than cnpl e R = cnple(A B) | _mmcnpgt pi 32 _mm andnot _si 64
or Equal To _mm cnpgt _pi 16
_mm cnpgt _pi 8

Comparison operators have the restriction that the operands must be the size and sign as listed in the
Compare Operator Overloading table.

Compare Operator Overloading

R Comparison A B

| 32vec2 R cnpeq I[s|u]32vec2 B I[s|u]32vec2 B
cnpne

| 16vecd R I[s|u] 16vecd B I[s|u]l6vecd B

| 8vec8 R I[s|u]8vec8 B I[s|u]8vec8 B

| 32vec2 R cnpgt | s32vec2 B | s32vec2 B
cnpge

| 16vecd R cnpl t | slévec4 B | slévec4 B
cnpl e

| 8vec8 R | s8vec8 B | s8vec8 B

293

Conditional Select Operators

For conditional select operands, the third and fourth operands determine the type returned. Third and
fourth operands with same size, but different signedness, return the nearest common ancestor data type.

Conditional Select Syntax Usage

/* Return the nearest comopn ancestor data type if third and fourth
operands are of the sane size, but different signs */

| 16vec4 R = sel ect _neq(lsl6vecd, |sl6vecd, |sl6vecd, |ulbvecd);

/* Conditional Select for Equality */

RO := (A0 == B0) ? CO : DO;
RL := (Al == B1) ? Cl : DI;
R = (A2 == B2) ? C2 : D2;
R3 := (A3 == B3) ? C3 : D3;

/* Conditional Select for Inequality */

RO := (A0 != BO) ? CO : DO;
RL:= (Al !=Bl) ? Cl : DI;
R = (A2 1=B2) ? C2: D2
R3

= (A3 != B3) ? C3 : D3;

Conditional Select Symbols and Corresponding Intrinsics

Conditional |Operators Syntax Corresponding Additional Intrinsic
Select For: Intrinsic (Applies to All)
Equality sel ect_eq |R=select_eq(A, B, C, D) _nm_cnpeq_pi 32 _mm_and_si 64
_mm cnpeq_pi 16 _nm or_si 64
_nm _cnpeq_pi 8 “nm andnot _si 64
Inequality sel ect _neq |R=select_neq(A, B, C, D) - mm _cnpeq_pi 32
- mm cnpeq_pi 16
_mm cnpeqg_pi 8
Greater Than sel ect _gt R = select_gt(A, B, C, D) _mm cnpgt _pi 32
- mm _cnpgt _pi 16
_mm cnpgt_pi 8
Greater Than sel ect _ge |R=select_gt(A, B, C, D) _mm cnpge_pi 32
or Equal To _mm cnpge_pi 16
_mm cnpge_pi 8

294

Conditional [Operators Syntax Corresponding Additional Intrinsic
Select For: Intrinsic (Applies to All)
Less Than select_lt R = select_lt(A, B, C, D) _mm cnpl t _pi 32

- mmecnplt_pi 16

- mmecnplt _pi8
Less Than select_le R = select_le(A, B, C, D) _mm cnpl e_pi 32
or Equal To _mm cnpl e_pi 16

_mm cnple_pi 8

All conditional select operands must be of the same size. The return data type is the nearest common
ancestor of operands C and D. For conditional select operations using greater-than or less-than
operations, the first and second operands must be signed as listed in the table that follows.

Conditional Select Operator Overloading

R Comparison A and B C D

I32vec2 R sel ect _eq I [s]|u]32vec?2 I[s|u]32vec2 |I[s|u]32vec2
sel ect _ne

I16vec4 R I [s]u] l6vecd I[s|u]16vecd |I[s|u]l6vecs

I8vec8 R I [s]u] 8vec8 I [s]u] 8Bvec8 I[s|u] 8vec8

I32vec2 R sel ect _gt | s32vec?2 | s32vec?2 | s32vec?2
sel ect _ge

I16vecd R select _I't | sl6vecd I slévecd | sl6vec4
select le

I8vec8 R | s8vec8 | s8vec8 | s8vec8

The table below shows the mapping of return values from RO to R7 for any number of elements. The

same return value mappings also apply when there are fewer than four return values.

295

Conditional Select Operator Return Value Mapping

Return A and B Operands C and D Operands
Value

A0 Available Operators BO
RO:= A0 == I= > >= < <= BO ? CO: DO;
R1:= AO == I= > >= < <= BO ?C1:D1;
R2:= A0 == 1= > >= < <= BO ? C2:D2;
R3:= AO == I= > >= < <= BO ? C3:Dg3;
R4:= A0 == 1= > >= < <= BO ? C4:D4;
R5:= AO == I= > >= < <= BO ? C5: D5;
R6:= A0 == 1= > >= < <= BO ? C6: D6;
R7:= AO == I= > >= < <= BO ? C7:DT7;
Debug

The debug operations do not map to any compiler intrinsics for MMX(TM) instructions. They are provided
for debugging programs only. Use of these operations may result in loss of performance, so you should
not use them outside of debugging.

Output

cout << |s32vecd A
cout << lu32vecd A

cout << hex << lu32vecd4 A, /* print in hex format */

The four 32-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

"[3]:A3 [2]:A2 [1]:A1 [0]:AQ"

Corresponding Intrinsics: none
cout << Is32vec2 A;

cout << lu32vec2 A;

cout << hex << lu32vec?2 A; /* print in hex format */

296

The two 32-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

"[1]:Al [0]:A0"

Corresponding Intrinsics: none

cout << Isl6vec8 A;
cout << lul6vec8 A;
cout << hex << lul6vec8 A; /* print in hex format */

The eight 16-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:Al [0]:A0"

Corresponding Intrinsics: none

cout << Isl6vecsd A;
cout << lul6bvecs A,
cout << hex << lul6vec4 A; /* print in hex format */

The four 16-bit values of A are placed in the output buffer and printed in the following format (default in
decimal):

"[3]:A3 [2]:A2 [1]:AL [0]:A0"

Corresponding Intrinsics: none

cout << IsBvecl6 A; cout << lu8vecl6 A; cout << hex << lu8vec8 A;
/* print in hex format instead of decimal*/

The sixteen 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

"[15]:A15 [14]:A14 [13]:A13 [12]:A12 [11]:A11 [10]:A10 [9]:A9 [8]:A8 [7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3
[2]:A2 [1]:A1 [0]:A0"

Corresponding Intrinsics: none

cout << |s8vec8 A; cout << lu8vec8 A;cout << hex << lu8vec8 A;

/* print in hex format instead of decimal*/

297

The eight 8-bit values of A are placed in the output buffer and printed in the following format (default is
decimal):

"[7]:A7 [6]:A6 [5]:A5 [4]:A4 [3]:A3 [2]:A2 [1]:Al [0]:A0"

Corresponding Intrinsics: none

Element Access Operators
int R = Is64vec2 A[il;

unsigned int R = lué4vec2 A[il;
int R = 1s32vec4 A[il;

unsigned int R = lu32vec4 A[il;
int R = 1s32vec2 A[il;

unsigned int R = lu32vec2 A[i];
short R = Is16vec8 A[i];

unsigned short R = lul6vec8 A[i;
short R = Is16vec4 A[i];

unsigned short R = lul6vec4 A[il;
signed char R = Is8vec16 A[il;
unsigned char R = lu8vec16 A[i];
signed char R = Is8vec8 A[i];
unsigned char R = lu8vec8 A[i];

Access and read elementi of A. If DEBUG is enabled and the user tries to access an element outside of
A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Element Assignment Operators
Is6dvec2 AJi] = int R;

Is32vec4 A[i] = int R;

lu32vec4 A[i] = unsigned int R;

Is32vec2 AJi] = int R;

lu32vec?2 A[i] = unsigned int R;

Is16vec8 AJi] = short R;

lul6vec8 A[i] = unsigned short R;

298

Isl6vecd A[i] = short R;

lul6vec4 A[i] = unsigned short R;
Is8vecl16 AJi] = signed char R;
lu8vecl6 A[i] = unsigned char R;
Is8vec8 AJi] = signed char R;
lu8vec8 A[i] = unsigned char R;

Assign Rto element i of A. If DEBUGIs enabled and the user tries to assign a value to an element outside
of A, a diagnostic message is printed and the program aborts.

Corresponding Intrinsics: none

Unpack Operators

| 364vec2 unpack_hi gh(164vec2 A, |64vec2 B)

| s64vec2 unpack_hi gh(l1s64vec2 A, |s64vec2 B)

| ué4vec2 unpack_hi gh(lu64vec2 A, |ubdvec2 B)

Interleave the 64-bit value from the high half of A with the 64-bit value from the high half of B.
RO = Al;

Rl = BI1;

Corresponding intrinsic: _nm _unpackhi _epi 64

| 32vec4 unpack_hi gh(132vec4 A, |32vec4 B)
| s32vec4 unpack_hi gh(1s32vec4 A, 1s32vec4 B)
I u3d2vec4 unpack_hi gh(lu32vecd4 A, 1u32vecd B)

Interleave the two 32-bit values from the high half of A with the two 32-bit values from the high half of B.

RO = Al,
Rl = B1;
R2 = A2;
R3 = B2;

Corresponding intrinsic: _nm unpackhi _epi 32

| 32vec2 unpack_hi gh(132vec2 A, |32vec2 B)

I s32vec2 unpack_hi gh(1s32vec2 A, |s32vec2 B)
| u32vec2 unpack_hi gh(lu32vec2 A, 1u32vec2 B)

299

Interleave the 32-bit value from the high half of A with the 32-bit value from the high half of B.
RO = A1,
Rl = BI1;

Corresponding intrinsic: _nm unpackhi _pi 32

| 16vec8 unpack_hi gh(I 16vec8 A, |16vec8 B)

| s16vec8 unpack_hi gh(lsl6vec8 A, |sl6vec8 B)

| ulévec8 unpack_hi gh(lulévec8 A, |ul6vec8 B)

Interleave the four 16-bit values from the high half of A with the two 16-bit values from the high half of B.
RO = A2,

RlL = B2; R2 = A3;

R3 = B3;

Corresponding intrinsic: _nm unpackhi _epi 16

| 16vec4 unpack_hi gh(l 16vecd4 A, |16vec4 B)

| sl6vecd unpack_hi gh(lsl6vecd A, |sl6vecd B)

| ulévec4 unpack_hi gh(lulévecd A, |ul6vecd B)

Interleave the two 16-bit values from the high half of A with the two 16-bit values from the high half of B.
RO = A2; Rl = B2,

R2 = A3; R3 = B3;

Corresponding intrinsic: _nm unpackhi _pi 16

| 8vec8 unpack_hi gh(18vec8 A, 18vec8 B)
| s8vec8 unpack_hi gh(1s8vec8 A, 18vec8 B)
| u8vec8 unpack_hi gh(lu8vec8 A, |8vec8 B)

Interleave the four 8-bit values from the high half of A with the four 8-bit values from the high half of B.

RO = A4,
R1 = B4;
R2 = A5;
R3 = BS;
R4 = AG;
R5 = BG;

300

R6 = A7,
R7 = B7,

Corresponding intrinsic: _nm unpackhi _pi 8

| 8vecl16 unpack_hi gh(l8vecl6 A, |8vecl6 B)
| s8vecl1l6 unpack_hi gh(ls8vecl6 A, |8vecl6 B)
| u8vecl6 unpack_hi gh(lu8vecl6 A, |8vecl6 B)

Interleave the sixteen 8-bit values from the high half of A with the four 8-bit values from the high half of B.

RO = AS8;
R1 = BS;
R2 = AQ9;
R3 = B9;
R4 = AlQ;
R5 = B10;
R6 = Al1;
R7 = Bl11,;
R8 = Al2;
R8 = B12;
R2 = Al3;
R3 = B13;
R4 = Al4,
R5 = Bl4;
R6 = AlS5;
R7 = BL15;

Corresponding intrinsic: _nm unpackhi _epi 16

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.
RO = AO;

R1 = BO;

Corresponding intrinsic: _rmm unpackl| o_epi 32

| 64vec2 unpack | ow(| 64vec2 A, |64vec2 B);
| s64vec2 unpack_| owm | s64vec2 A, |s64vec2 B);

301

| uédvec2 unpack_| ow(l u6dvec2 A, |u6dvec2 B);

Interleave the 64-bit value from the low half of A with the 64-bit values from the low half of B.

RO = AO;
Rl = BO;
R2 = Al,
R3 = B1,

Corresponding intrinsic: _mm unpack! o_epi 32

| 32vec4 unpack_| ow(| 32vec4 A, |32vecd B);

| s32vec4 unpack_| ow(ls32vecd4 A, 1s32vec4d B);

I u3d2vec4 unpack_| ow(1 u32vecd4 A, 1u32vec4d B);

Interleave the two 32-bit values from the low half of A with the two 32-bit values from the low half of B.
RO = AO0; Rl = BO;

R2 = Al; R3 = BI1;

Corresponding intrinsic: _nm unpackl o_epi 32

| 32vec2 unpack_| owm132vec2 A, 132vec2 B);

| s32vec2 unpack | ow(ls32vec2 A, |s32vec2 B);

lu32vec2 unpack | ow(lu32vec2 A, 1u32vec2 B);

Interleave the 32-bit value from the low half of A with the 32-bit value from the low half of B.
RO = AO;

R1 = BO;

Corresponding intrinsic: _mm unpackl! o_pi 32

| 16vec8 unpack | ow|16vec8 A, |16vec8 B);
| sl6vec8 unpack | ow(lsl6vec8 A, |sl6vec8 B);
lul6évec8 unpack_ | owm |l ulévec8 A, lulbvec8 B);

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.

RO = AO;
R1 = BO;
R2 = Al;
R3 = B1,

302

R4 = A2;

R5 = B2,
R6 = A3,
R7 = BS,;

Corresponding intrinsic: _nm unpackl o_epi 16

| 16vecd unpack_| ow(| 16vec4 A, |16vecd B);
| si6vecd unpack_| ow(lsl6vecd A, |1sl6vecd B);
lulévecd unpack_| om I ulévecd A, |ul6vecd B);

Interleave the two 16-bit values from the low half of A with the two 16-bit values from the low half of B.

RO = AO;
R1 = BO;
R2 = Al,
R3 = B1,

Corresponding intrinsic: _nm unpackl o_pi 16

| 8vecl6 unpack | ow(|18vecl6 A, 18vecl6 B);
| s8vecl6 unpack_| ow(ls8vecl6 A, |1s8vecl6 B);
| u8vecl6 unpack | ow(lu8vecl6 A, |u8vecl6 B);

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.

RO = AO;
R1 = BO;
R2 = Al,
R3 = B1;
R4 = A2;
R5 = B2,
R6 = A3;
R7 = BS;
R8 = A4,
RO = B4;
R10 = A5;
R11 = BS5;

303

R12 = AG6;

R13 = B6;
R14 = A7;
R15 = B7;

Corresponding intrinsic: _nm unpackl o_epi 8

| 8vec8 unpack | ow(I8vec8 A [|8vec8 B);
| s8vec8 unpack_| om |1 s8vec8 A, |s8vec8 B);
| u8vec8 unpack | owm |1 u8vec8 A, 1u8vec8 B);

Interleave the four 8-bit values from the high low of A with the four 8-bit values from the low half of B.

RO = AO;
R1 = BO;
R2 = Al,
R3 = B1,
R4 = A2;
R5 = B2,
R6 = A3,
R7 = BS;

Corresponding intrinsic: _nmm unpackl o_pi 8

304

Pack Operators
| sl6vec8 pack_sat (1 s32vec2 A, 1s32vec2 B);
Pack the eight 32-bit values found in A and B into eight 16-bit values with signed saturation.

Corresponding intrinsic: _mm packs_epi 32

| sl6vecd pack_sat (1s32vec2 A 1s32vec2 B);
Pack the four 32-bit values found in A and B into eight 16-bit values with signed saturation.

Corresponding intrinsic: _nm packs_pi 32

| s8vecl6 pack_sat(lsl6vec4 A Isl6vecd B);
Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with signed saturation.

Corresponding intrinsic: _nm packs_epi 16

| s8vec8 pack _sat(lsl6vec4 A |Isl6évecd B);
Pack the eight 16-bit values found in Aand B into eight 8-bit values with signed saturation.

Corresponding intrinsic: _nm packs_pi 16

| u8vecl6 packu_sat(lsl6vecd A |Isl6vecd B);

Pack the sixteen 16-bit values found in A and B into sixteen 8-bit values with unsigned saturation .

Corresponding intrinsic: _mm packus_epi 16

| u8vec8 packu_sat (I sl6vec4 A, Isl6vecd B);
Pack the eight 16-bit values found in Aand B into eight 8-bit values with unsigned saturation.

Corresponding intrinsic: _mm packs_pul6

Clear MMX(TM) Instructions State Operator
voi d enpty(void);

Empty the MMX(TM) registers and clear the MMX state. Read the guidelines for using the EMMS
instruction intrinsic.

Corresponding intrinsic: _nmm enpty

305

Integer Intrinsics for Streaming SIMD Extensions

ENote

You must include f vec. h header file for the following functionality.

Isl6vecd simd_max(Isl6vecd A, Isl6vecsd B);
Compute the element-wise maximum of the respective signed integer words in A and B.

Corresponding intrinsic: _mm max_pi 16

Isl6vec4 simd_min(lsl6vec4 A, Isl6vec4 B);
Compute the element-wise minimum of the respective signed integer words in A and B.

Corresponding intrinsic: _nmm_mi n_pi 16

lu8vec8 simd_max(lu8vec8 A, lu8vec8 B);
Compute the element-wise maximum of the respective unsigned bytes in A and B.

Corresponding intrinsic: _mm max_pu8

lu8vec8 simd_min(lu8vec8 A, lu8vec8 B);
Compute the element-wise minimum of the respective unsigned bytes in A and B.

Corresponding intrinsic: _nmm m n_pu8

int move_mask(l18vec8 A);
Create an 8-bit mask from the most significant bits of the bytes in A.

Corresponding intrinsic: _nm novermask pi 8

void mask_move(I8vec8 A, 18vec8 B, signed char *p) ;

Conditionally store byte elements of A to address p. The high bit of each byte in the selector B determines
whether the corresponding byte in A will be stored.

Corresponding intrinsic: _mm masknove_si 64

void store_nta(__m64 *p, M4 A);

306

Store the data in A to the address p without polluting the caches. A can be any Ivec type.

Corresponding intrinsic: _nmm st r eam pi

lu8vec8 simd_avg(lu8vec8 A, lu8vec8 B);
Compute the element-wise average of the respective unsigned 8-bit integers in A and B.

Corresponding intrinsic: _mm avg_pu8

lulévec4 simd_avg(lul6vec4 A, lulévec4 B);
Compute the element-wise average of the respective unsigned 16-bit integers in A and B.

Corresponding intrinsic: _mm avg_pul6

Conversions Between Fvec and Ivec

int F64vec2Tolnt(F64vecd2 A)
Convert the lower double-precision floating-point value of A to a 32-bit integer with truncation.

r:= (int)AO

F64vec2 F32vec4ToF64vec2(F32vecd A)

Convert the four floating-point values of A to two the tow least significant double-precision floating-point
values.

r0 := (double)AO;

rl := (double)Al;

F32vec4 F64vec2ToF32vec4(F64vec2 A)
Convert the two double-precision floating-point values of A to two single-precision floating-point values.
r0 := (float)AO;

rl = (float)A1,

F64vec2 InttoF64vec2(F64vec2 A, int B)

Convert the signed i nt in B to a double-precision floating-point value and pass the upper double-
precision. value from A through to the result.

r0 := (double)B;

rl:=Al,;

307

int F32vec4Tolnt(F32vec4 A)
Convert the lower floating-point value of A to a 32-bit integer with truncation.

r:= (int)A0

Is32vec2 F32vec4Tols32vec?2 (F32vecd A)

Convert the two lower floating-point values of A to two 32-bit integer with truncation, returning the integers
in packed form.

r0 := (int)A0

rl := (int)Al

F32vec4 IntToF32vec4(F32vec4d A, int B)

Convert the 32-bit integer value B to a floating-point value; the upper three floating-point values are
passed through from A.

r0 := (float)B
rl:= A1,
r2:=A2;
r3:=A3

F32vec4 Is32vec2ToF32vec4(F32vecs A, I1s32vec?2 B)

Convert the two 32-bit integer values in packed form in B to two floating-point values; the upper two
floating-point values are passed through from A.

r0 := (float)BO
rl := (float)B1
r2 := A2

r3:= A3

308

Floating-point Vector Classes

Floating-point Vector Classes

The floating-point vector classes (Fvec), F64vec2, F32vec4, and F32vecl, provide an interface to SIMD

operations. The class specifications are as follows:
F64vec2 A(doubl e x,

F32vec4 A(fl oat z,

F32vecl B(fl oat w);

float v,

doubl e y);

float x, float w);

The packed floating-point input values are represented with the right-most value lowest as shown in the

following table.

Single-Precision Floating-point Elements

Operands

Operations

Return
Value

High Value

L

127

A3

Al

Low Yalue

B3

B1

R3

R1

53

™ vt

128 bits F32vecd (RO, R1, B2, and R3)

F32vecd returns four packed single-precision floating point values (RO, R1, R2, and R3).
F32vec? returns one single-precision floating point value RO,

309

Fvec Notation Conventions

This reference uses the following conventions for syntax and return values.

Fvec Classes Syntax Notation

Fvec classes use the syntax conventions shown the following examples:
[Fvec_Class] R = [Fvec_Cl ass] A [operator][lvec_C ass] B;
Example 1:F64vec2 R = F64vec2 A & F64vec?2 B;

[Fvec_Class] R = [operator] ([Fvec_C ass] A [Fvec_O ass] B);
Example 2:F64vec2 R = andnot(F64vec2 A, F64vec?2 B);

[Fvec_Cl ass] R [operator]= [Fvec_C ass] A

Example 3:F64vec2 R &= F64vec2 A,

where

[oper at or] is an operator (for example, &, | , or)

[Fvec_d ass] is any Fvec class (F64vec2, F32vec4, or F32vecl)

R, A, B are declared Fvec variables of the type indicated

Return Value Notation

Because the Fvec classes have packed elements, the return values typically follow the conventions
presented in the Return Value Convention Notation Mappings table below. F32vec4 returns four single-
precision, floating-point values (RO, R1, R2, and R3); F64vec?2 returns two double-precision, floating-point
values, and F32vec1 returns the lowest single-precision floating-point value (RO).

Return Value Convention Notation Mappings

Example 1: |[Example 2: [Example 3: |F32vec4 F64vec?2 F32vecl

RO := A0 & BO; [RO := AO RO &= AO0;
andnot BO; X X X

R1:=Al1&B1;|R1:=Al R1 &= Al; X X N/A
andnot B1;

R2:= A2 & B2;|R2 := A2 R2 &= A2; X N/A N/A
andnot B2;

R3:=A3&B3 |R3:=A3 R3 &= A3; X N/A N/A
andhot B3;

310

Data Alignment

Memory operations using the Streaming SIMD Extensions should be performed on 16-byte-aligned data
whenever possible.

F32vec4 and F64vec?2 object variables are properly aligned by default. Note that floating point arrays
are not automatically aligned. To get 16-byte alignment, you can use the alignment __decl spec.

__decl spec(align(16)) float Al 4];

Conversions

__m128d mm = A & B; /* where A,B are F64vec2 object variables */

__m128 mm = A & B; /* where A,B are F32vec4 object variables */

__m128 mm = A & B; /* where A,B are F32vecl object variables */

All Fvec object variables can be implicitly converted to __ nil28 data types. For example, the results of
computations performed on F32vec4 or F32vecl object variables can be assignedto _ nil28 data
types.

Constructors and Initialization

The following table shows how to create and initialize F32vec objects with the Fvec classes.

Constructors and Initialization for Fvec Classes

Example Intrinsic Returns

Constructor Declaration

F64vec?2 A; N/A N/A
F32vec4 B;
F32vecl C;

__m128 Object Initialization

F64vec2 A(__m128d mm); N/A N/A
F32vec4 B(__m128 mm);
F32vecl C(__m128 mm);

Double Initialization

/* Initializes two doubles. */ _mm_set_pd A0 :=dO;
F64vec2 A(doubl e dO, double dl); Al :=d1;
F64vec2 A = F64vec2(doubl e dO, double dl);

F64vec2 A(double d0); _mm_setl_pd A0 := do;
/* Initializes both return values wi t h t he sanme doubl e Bhas
preci sion value */.

Float Initialization

311

Example Intrinsic Returns
F32vec4 A(float f3, float f2, f | oat f1, float fO0); _mm_set_ps ﬁg ff;%
A2 = f2;
F32vec4 A = F32vec4(float f3, float f2, f | oat f1, A3 = f3:
float fO0);
F32vec4 A(float f0); _mm_setl ps AO = 10;
/* Initializes all return valueswi t h t he sane 2% f;g
floating point value. */ A3 ;;fo;
F32vec4 A(double d0); _mm_setl ps(d) AQ :=d0
/* Initialize all return values with the same double- 2; - 38
precision value. */ A3 = do
F32vecl A(double d0); _mm_set_ss(d) AQ :=d0
/* Initializes the lowest value of A with dO and t he 2; fg
ot her values with 0.*/ A3 =0
F32vecl B(float f0); _mm_set_ss BO :=10;
/* Initializes the lowest value of B with f0 and t he g; =81
ot her values with 0.*/ B3 = 0
F32vecl B(int I); _mm_cvtsi32_ss BO :=f0;
/* Initializes the | owest value of Bwth Bl:={
f0, other values are undefined.*/ gg ;;g

Arithmetic Operators

The following table lists the arithmetic operators of the Fvec classes and generic syntax. The operators
have been divided into standard and advanced operations, which are described in more detail later in this

section.

Fvec Arithmetic Operators

Category Operation Operators Generic Syntax
Standard Addition + R=A+B;
+= R +=A;
Subtraction - R=A-B;
= R -= A;
Multiplication * R=A*B,;
*: R *: A’
Division / R=A/B;
= R /= A,

312

Advanced

Square Root sqrt R = sqrt(A);

Reciprocal (Newton-Raphson) rcp R =rcp(A);
rcp_nr R =rep_nr(A);

Reciprocal Square Root (Newton-Raphson) rsqrt R = rsqrt(A);
rsqrt_nr R =rsqrt_nr(A);

Standard Arithmetic Operator Usage

The following two tables show the return values for each class of the standard arithmetic operators, which
use the syntax styles described earlier in the Return Value Notation section.

Standard Arithmetic Return Value Mapping

R A Operators B F32vec4 F64vec?2 F32vecl
RO:= |AO + * ! BO
R1:= |Al + * / B1 N/A
R2:= |A2 + * / B2 N/A N/A
R3:= |A3 + * / B3 N/A N/A
Arithmetic with Assignment Return Value Mapping
R Operators A F32vec4d F64vec2 F32vecl
RO:= += = *= /= A0
R1:= += = *= /= Al N/A
R2:= += = *= /= A2 N/A N/A
R3:= += = *= /= A3 N/A N/A
The table below lists standard arithmetic operator syntax and intrinsics.
Standard Arithmetic Operations for Fvec Classes
Operation Returns Example Syntax Usage Intrinsic
Addition 4 floats F32vec4 R = F32vec4 A + F32vec4 B; _mm_add_ps
F32vec4 R += F32vec4d A;
2 doubles F64vec2 R = F64vec2 A + F32vec2 B; _mm_add_pd
F64vec2 R += F64vec2 A;
1 float F32vecl R = F32vecl A + F32vecl B; _mm_add_ss
F32vecl R += F32vecl A;
Subtraction 4 floats F32vec4 R = F32vec4 A - F32vec4 B; _mm_sub_ps
F32vec4 R -= F32vec4 A,

313

Operation Returns Example Syntax Usage Intrinsic

2 doubles F64vec2 R - F64vec2 A + F32vec2 B; mm_sub_pd
F64vec2 R -= F64vec2 A; B -

1 float F32vecl R = F32vecl A - F32vecl B; mm sub ss
F32vecl R -= F32vecl A; B -

Multiplication 4 floats F32vec4 R = F32vec4 A * F32vec4 B; mm_mul_ps
F32vec4 R *= F32vec4 A; B -

2 doubles F64vec2 R = F64vec2 A * F364vec2 B; mm_mul_pd
F64vec2 R *= F64vec2 A; B -

1 float F32vecl R = F32vecl A * F32vecl B; mm mul ss
F32vecl R *= F32vecl A; B - -

Division 4 floats F32vec4 R = F32vec4 A/ F32vec4 B; mm_div_ps
F32vec4 R /= F32vec4 A; B -

2 doubles F64vec2 R = F64vec2 A |/ F64vec2 B; mm_div_pd
F64vec2 R /= F64vec2 A; B -

1 float F32vecl R = F32vecl A/ F32vecl B; mm div ss
F32vecl R /= F32vecl A; B -

Advanced Arithmetic Operator Usage

The following table shows the return values classes of the advanced arithmetic operators, which use the
syntax styles described earlier in the Return Value Notation section.

Advanced Arithmetic Return Value Mapping

R Operators A F32vec4 F64vec2 F32vecl
RO:= |sqrt |rcp rsqrt |rcp_nr |[rsqrt_nr |AO

Rl=|sqrt |rcp rsqrt |rcp_nr rsqrt_nr [Al N/A

R2= |sgrt |rcp rsqrt |rcp_nr |rsgrt_nr [A2 N/A N/A
R3=|sgrt |rcp rsqrt |rcp_nr |rsgrt_nr [A3 N/A N/A

fi= add_horizontal (A0 + Al + A2 +A3) N/A N/A

d:= add_horizontal (A0 + A1) N/A N/A

The table below shows examples for advanced arithmetic operators.

314

Advanced Arithmetic Operations for Fvec Classes

Returns

Example Syntax Usage

Intrinsic

Square Root

4 floats F32vec4 R = sqrt(F32vecd A); mmsqrt_ps
2 doubles F64vec2 R = sqrt(F64vec2 A); mm sqrt_pd
1 float F32vecl R = sqrt(F32vecl A); - mmsqrt_ss
Reciproca

4 floats F32vec4 R = rcp(F32vec4d A); _mm.rcp_ps
2 doubles F64vec2 R = rcp(F64vec2 A); mm rcp_pd
1 float F32vecl R = rcp(F32vecl A); _mmrcp_ss

Reciprocal Square Root

4 floats F32vec4 R = rsqrt (F32vecd A); _mmrsqrt_ps
2 doubles F64vec2 R = rsqrt (F64vec2 A); mmrsqrt_pd
1 float F32vecl R = rsqrt(F32vecl A); _mmrsqrt_ss

Reciprocal Newton Raphson

4 floats

F32vec4 R

rcp_nr(F32vec4 A);

_mm sub_ps
_mm _add_ps
_mm_nul _ps
_nmm.rcp_ps

2 doubles

F64vec2 R

rcp_nr(F64vec2 A);

_mm sub_pd
mm add_pd
- mm rmul _pd
mm rcp_pd

1 float

F32vecl R

rcp_nr(F32vecl A);

mm sub_ss
mm add_ss
mm _nul _ss
mmrcp_ss

Reciprocal Square Root

Newton Raphson

4 float

F32vec4 R

rsqrt_nr(F32vecd A);

_mm sub_pd
_mm_nmul _pd
mmrsqrt_ps

2 doubles

F64vec2 R

rsqrt_nr(F64vec2 A);

_mm sub_pd
mm rmul _pd
mmrsqrt_pd

315

Returns Example Syntax Usage Intrinsic

1 float F32vecl R = rsqgrt_nr(F32vecl A); _nmm sub_ss
mm rmul _ss
_mmrsqrt_ss

Horizontal Add

1 float float f = add_hori zontal (F32vecd4 A); mm add_ss
mm shuffle_ss

1 double doubl e d = add_hori zontal (F64vec2 A); _mm add_sd
mm shuffle_sd

Minimum and Maximum Operators

F64vec2 R = simd_min(F64vec2 A, F64vec2 B)

Compute the minimums of the two double precision floating-point values of A and B.
RO := min(A0,B0);

R1 := min(Al1,B1);

Corresponding intrinsic: _nm_mi n_pd

F32vec4 R = simd_min(F32vec4 A, F32vec4 B)

Compute the minimums of the four single precision floating-point values of A and B.
RO := min(A0,B0);

R1 :=min(A1,B1);

R2 := min(A2,B2);

R3 := min(A3,B3);

Corresponding intrinsic: _nmm_mi n_ps

F32vecl R = simd_min(F32vecl A, F32vecl B)

Compute the minimum of the lowest single precision floating-point values of A and B.
RO := min(A0,B0);

Corresponding intrinsic: _nmm_mi n_ss

F64vec2 simd_max(F64vec2 A, F64vec?2 B)

316

Compute the maximums of the two double precision floating-point values of A and B.

RO : = max(A0, BO);

R1 :

max(Al, B1);

Corresponding intrinsic: _mm max_pd

F32vec4 R = simd_man(F32vec4 A, F32vec4 B)

Compute the maximums of the four single precision floating-point values of A and B.
RO := max(A0,B0);

R1 := max(Al1,B1);

R2 := max(A2,B2);

R3 := max(A3,B3);

Corresponding intrinsic: _nmm_max_ps

F32vecl simd_max(F32vecl A, F32vecl B)
Compute the maximum of the lowest single precision floating-point values of A and B.
RO := max(A0,B0);

Corresponding intrinsic: _nmm max_ss

Logical Operators

The "Fvec Logical Operators Return Value Mapping" table lists the logical operators of the Fvec classes
and generic syntax. The logical operators for F32vec1 classes use only the lower 32 bits.

Fvec Logical Operators Return Value Mapping

Bitwise Operation Operators Generic Syntax
AND & R=A&B;
&= R&=A;
OR | R=A|B;
= R |: A;
XOR A R=ANB;
N= R A= A;
andnot andnot R = andnot(A);

317

The following table lists standard logical operators syntax and corresponding intrinsics. Note that there is
no corresponding scalar intrinsic for the F32vec1 classes, which accesses the lower 32 bits of the
packed vector intrinsics.

Logical Operations for Fvec Classes

Operation [Returns Example Syntax Usage Intrinsic
AND 4 floats F32vec4 & = F32vec4 A & F32vec4 B; _mm and_ps
F32vec4 & &= F32vec4d A

2 doubles F64vec2 R = F64vec2 A & F32vec?2 B; - mm and_pd
F64vec2 R &= F64vec2 A
1 float F32vecl R = F32vecl A & F32vecl B; _mm and_ps
F32vecl R &= F32vecl A
OR 4 floats F32vec4 R = F32vec4 A | F32vec4d B; _mm or_ps
F32vec4 R | = F32vec4d A
2 doubles F64vec2 F64vec2 A | F32vec2 B; mm or _pd

R =
F64vec2 R | = F64vec2 A

1 float F32vecl R = F32vecl A | F32vecl B; _mm or_ps
F32vecl R | = F32vecl A

XOR 4 floats F32vec4 R = F32vec4 A N F32vec4d B; _nm xor _ps
F32vec4 R "= F32vec4 A
2 doubles F64vec2 R = F64vec2 A ™ F364vec2 B; _mm xor_pd
F64vec2 R "= F64vec2 A
1 float F32vecl R = F32vecl A ™ F32vecl B; _nm xor _ps
F32vecl R ~= F32vecl A
ANDNOT 2 doubles F64vec2 R = andnot (F64vec2 A, _mm andnot _pd
F64vec2 B);

318

Compare Operators

The operators described in this section compare the single precision floating-point values of A and B.
Comparison between objects of any Fvec class return the same class being compared.

The following table lists the compare operators for the Fvec classes.

Compare Operators and Corresponding Intrinsics

Compare For: Operators Syntax

Equality cmpeq R = cmpeq(A, B)
Inequality cmpneq R = cmpneq(A, B)
Greater Than cmpgt R = cmpgt(A, B)
Greater Than or Equal To cmpge R = cmpge(A, B)
Not Greater Than cmpngt R = cmpngt(A, B)
Not Greater Than or Equal To cmpnge R = cmpnge(A, B)
Less Than cmplt R = cmplt(A, B)
Less Than or Equal To cmple R = cmple(A, B)
Not Less Than cmpnlt R = cmpnlt(A, B)
Not Less Than or Equal To cmpnle R = cmpnle(A, B)

Compare Operators

The mask is setto Oxf fff f f f f for each floating-point value where the comparison is true and

0x00000000 where the comparison is false. The table below shows the return values for each class of

the compare operators, which use the syntax described earlier in the Return Value Notation section.

Compare Operator Return Value Mapping

R A0 For
Any
Operat
ors

B If True

If False

F32vec |F64vec
4 2

F32vec

RO:= (A1 cmpleq |
It]le]gt|
(AL ge]
cmplne |
nlt | nle |

ngt | nge]

B1) Nt
B1)

0x000000
0

319

R AO For B If True |If False|F32vec |[F64vec [F32vec
Any 4 2 1
Operat
ors

R1:= (Al cmpleq | |B2) Oxffffffff |0x000000 |X X N/A
It]le|gt||B2) 0
(AL ge]

cmplne |
nit | nle |
ngt | nge]

R2:= (A1 cmpleq | |B3) Oxffffffff |0x000000 |X N/A N/A
It|le|gt]|B3) 0
1(AL ge]
cmplne |
nit | nle |
ngt | nge]

R3:= A3 cmpleq| |B3) OxFfffffff |0x000000 X N/A N/A
It]le|gt]|B3) 0
ge]
cmplne |
nit | nle |
ngt | nge]

The Compare Operations for Fvec Classes table shows examples for arithmetic operators and intrinsics.

Compare Operations for Fvec Classes

Returns Example Syntax Usage |Intrinsic

Compare for Equality

4 floats F32vec4 R = _mm_cmpeq_ps
cmpeq(F32vecs A);

2 doubles F64vec2 R = _mm_cmpeq_pd
cmpeq(F64vec2 A);

1 float F32vecl R = _mm_cmpeq_ss
cmpeq(F32vecl A);

Compare for Inequality

4 floats F32vec4 R = _mm_cmpneq_ps
cmpneq(F32vecs A);

2 doubles F64vec2 R = _mm_cmpneq_pd
cmpneq(F64vec2 A);

1 float F32vecl R = _mm_cmpneq_ss
cmpneq(F32vecl A);

Compare for Less Than

4 floats F32vecd R = _mm_cmplt_ps

—emm e laf—AAN. . _ A AN

320

cmplt(F32vec4 A);

2 doubles F64vec2 R = _mm_cmplt_pd
cmplt(F64vec2 A);
1 float F32vecl R =

cmplt(F32vecl A);

_mm_cmplt_ss

Compare for Less Than
or Equal

4 floats F32vec4 R = _mm_cmple_ps
cmple(F32vec4 A);

2 doubles F64vec2 R = _mm_cmple_pd
cmple(F64vec2 A);

1 float F32vecl R = _mm_cmple_pd
cmple(F32vecl A);

Compare for Greater

Than

4 floats F32vec4 R = _mm_cmpgt_ps
cmpgt(F32vecs A);

2 doubles F64vec2 R = _mm_cmpgt_pd
cmpgt(F32vec42 A);

1 float F32veclR = _mm_cmpgt_ss
cmpgt(F32vecl A);

Compare for Greater

Than or Equal To

4 floats F32vecd R = _mm_cmpge_ps
cmpge(F32vecs A);

2 doubles F64vec2 R = _mm_cmpge_pd
cmpge(F64vec2 A);

1 float F32vecl R = _mm_cmpge_ss
cmpge(F32vecl A);

Compare for Not Less

Than

4 floats F32vec4 R = _mm_cmpnlt_ps
cmpnlt(F32vec4 A);

2 doubles F64vec2 R = _mm_cmpnlit_pd

cmpnlt(F64vec?2 A);

321

1 float

F32vecl R =
cmpnlt(F32vecl A);

_mm_cmpnlt_ss

Compare for Not Less
Than or Equal

4 floats F32vec4 R = _mm_cmpnle_ps
cmpnle(F32vec4 A);

2 doubles F64vec2 R = _mm_cmpnle_pd
cmpnle(F64vec?2 A);

1 float F32vecl R = _mm_cmpnle_ss

cmpnle(F32vecl A);

Compare for Not
Greater Than

4 floats F32vec4 R = _mm_cmpngt_ps
cmpngt(F32vec4 A);

2 doubles F64vec2 R = _mm_cmpngt_pd
cmpngt(F64vec2 A);

1 float F32vecl R = _mm_cmpngt_ss
cmpngt(F32vecl A);

Compare for Not

Greater Than or Equal

4 floats F32vecd R = _mm_cmpnge_ps
cmpnge(F32vec4 A);

2 doubles F64vec2 R = _mm_cmpnge_pd
cmpnge(F64vec2 A);

1 float F32vecl R = _mm_cmpnge_ss
cmpnge(F32vecl A);

322

Conditional Select Operators for Fvec Classes

Each conditional function compares single-precision floating-point values of A and B. The Cand D

parameters are used for return value. Comparison between objects of any Fvec class returns the same

class.

Conditional Select Operators for Fvec Classes

Conditional Select for: |Operators Syntax

Equality select_eq R = select_eq(A, B)
Inequality select_neq R = select_neq(A, B)
Greater Than select_gt R = select_gt(A, B)
Greater Than or Equal To select_ge R = select_ge(A, B)
Not Greater Than select_gt R = select_gt(A, B)
Not Greater Than or Equal To |select_ge R = select_ge(A, B)
Less Than select_lt R = select_lt(A, B)
Less Than or Equal To select_le R = select_le(A, B)
Not Less Than select_nlt R = select_nlt(A, B)
Not Less Than or Equal To select_nle R = select_nle(A, B)

Conditional Select Operator Usage

For conditional select operators, the return value is stored in Cif the comparison is true or in D if false.

The following table shows the return values for each class of the conditional select operators, using the

Return Value Notation described earlier.

Compare Operator Return Value Mapping

R AO Operat
ors

B C

D

F32vec |F64vec
4 2

F32vec

RO:= (A1 select_[e
gllt|le]
(AL gt | ge]

select_[n
e|nlt|
nle | ngt |
nge]

BO) co
BO) co

DO
DO

X X

323

R A0 Operat |B C D F32vec [F64vec |F32vec
ors 4 2 1

RL= |A2 select_[e [B1) c1 D1 X X N/A
qllit|le| | B1) c1 D1
(A2 gt | ge]

select_[n
e|nlt|
nle | ngt |
nge]

R2:= (A2 select_[e (B2) c2 D2 X N/A N/A
qllt|le| |B2) c2 D2
1(A2 agt|gel

select_[n
e|nlt|
nle | ngt |
nge]

R3:= (A3 select_[e [B3) C3 D3 X N/A N/A
qllt]le] |B3) C3 D3
1(A3 gt| ge]

select_[n
e|nlt|
nle | ngt |
nge]

The following table shows examples for conditional select operations and corresponding intrinsics.

Conditional Select Operations for Fvec Classes

Returns Example Syntax Usage |Intrinsic

Compare for Equality

4 floats F32vec4d R = _mm_cmpeq_ps
select_eq(F32vec4 A);

2 doubles F64vec2 R = _mm_cmpeq_pd
select_eq(F64vec2 A);

1 float F32vecl R = _mMm_Ccmpeq_ss
select_eq(F32vecl A);

Compare for Inequality

4 floats F32vec4 R = _mm_cmpneq_ps
select_neq(F32vec4 A);

2 doubles F64vec2 R = _mm_cmpneg_pd
select_neq(F64vec?2 A);

1 float F32vecl R = _mm_cmpneq_ss
select_neq(F32vecl A);

324

Compare for Less Than

4 floats F32vecd R = _mm_cmplt_ps
select_It(F32vec4 A);

2 doubles F64vec2 R = _mm_cmplt_pd
select_It(F64vec2 A);

1 float F32vecl R =

select_It(F32vecl A);

_mm_cmplt_ss

Compare for Less Than
or Equal

4 floats F32vec4 R = _mm_cmple_ps
select_le(F32vec4 A);

2 doubles F64vec2 R = _mm_cmple_pd
select_le(F64vec2 A);

1 float F32vecl R =

select_le(F32vecl A);

_mm_cmple_ps

Compare for Greater
Than

4 floats F32vec4 R = _mm_cmpgt_ps
select_gt(F32vec4 A);

2 doubles F64vec2 R = _mm_cmpgt_pd
select_gt(F64vec2 A);

1 float F32vecl R =

select_gt(F32vecl A);

. mm_cmpgt_ss

Compare for Greater
Than or Equal To

4 floats F32vecl R = _mm_cmpge_ps
select_ge(F32vec4 A);

2 doubles F64vec2 R = _mm_cmpge_pd
select_ge(F64vec2 A);

1 float F32veclR =

select_ge(F32vecl A);

_mm_cmpge_ss

Compare for Not Less
Than

4 floats

F32vecl R =
select_nlt(F32vec4 A);

_mm_cmpnlt_ps

325

2 doubles

F64vec2 R =
select_nlt(F64vec2 A);

_mm_cmpnlt_pd

1 float

F32veclR =
select_nlt(F32vecl A);

_mm_cmpnlt_ss

Compare for Not Less
Than or Equal

4 floats F32vecl R = _mm_cmpnle_ps
select_nle(F32vec4 A);

2 doubles F64vec2 R = _mm_cmpnle_pd
select_nle(F64vec2 A);

1 float F32vecl R =

select_nle(F32vecl A);

_mm_cmpnle_ss

Compare for Not
Greater Than

4 floats F32vecl R = _mm_cmpngt_ps
select_ngt(F32vec4 A);

2 doubles F64vec2 R = _mm_cmpngt_pd
select_ngt(F64vec2 A);

1 float F32vecl R =

select_ngt(F32vecl A);

_mm_cmpngt_ss

Compare for Not
Greater Than or Equal

4 floats F32vecl R = _mm_cmpnge_ps
select_nge(F32vec4 A);

2 doubles F64vec2 R = _mm_cmpnge_pd
select_nge(F64vec2 A);

1 float F32vecl R =

select_nge(F32vecl A);

_mm_cmpnge_ss

326

Cacheability Support Operations
void store_nta(double *p, F64vec2 A);

Stores (non-temporal) the two double-precision floating-point values of A. Requires a 16-byte aligned
address.

Corresponding intrinsic: _nm stream pd

void store_nta(float *p, F32vecd4 A);

Stores (non-temporal) the four single precision floating-point values of A. Requires a 16-byte aligned
address.

Corresponding intrinsic: _nm stream ps
Debugging
The debug operations do not map to any compiler intrinsics for MMX(TM) technology or Streaming SIMD

Extensions. They are provided for debugging programs only. Use of these operations may result in loss of
performance, so you should not use them outside of debugging.

Output Operations
cout << F64vec?2 A;

The two single double precision floating-point values of A are placed in the output buffer and printed in
decimal format as follows:

"[1]:A1 [0]:AO"

Corresponding intrinsics: none

cout << F32vec4 A;

The four single precision floating-point values of A are placed in the output buffer and printed in decimal
format as follows:

"[3]:A3 [2]:A2 [1]:A1 [0]:AQ"

Corresponding intrinsics: none
cout << F32vecl A;

The lowest single precision floating-point value of Ais placed in the output buffer and printed.

Corresponding intrinsics: none

327

Element Access Operations
double d = F64vec2 A[int i]

Read one of the two double precision floating-point values of A without modifying the corresponding
floating point value. Permitted values of i are 0 and 1. For example:

double d = F64vec2 A[1];

If DEBUG is enabled and i is not one of the permitted values (0 or 1), a diagnostic message is printed
and the program aborts.

Corresponding intrinsics: none

float f = F32vec4 A[int i]

Read one of the four single precision floating-point values of A without modifying the corresponding
floating point value. Permitted values of i are 0, 1, 2, and 3. For example:

float f = F32vec4 A[2];

If DEBUG is enabled and i is not one of the permitted values (0-3), a diagnostic message is printed and
the program aborts.

Corresponding intrinsics: none

Element Assignment Operations
F64vecd Afinti] = doubl e d;

Modify one of the two double precision floating-point values of A. Permitted values of inti are 0 and 1.
For example:

F32vec4 A[1] = double d;
F32vec4 Alinti] = float f;

Modify one of the four single precision floating-point values of A. Permitted values of inti are 0, 1, 2, and
3. For example:

F32vec4 A[3] = float f;

If DEBUG is enabled and int i is not one of the permitted values (0-3), a diagnostic message is printed
and the program aborts.

Corresponding intrinsics: none.

328

Load and Store Operators
voi d | oadu(F64vec2 A, doubl e *p)

Loads two double-precision floating-point values, copying them into the two floating-point values of A. No
assumption is made for alignment.

Corresponding intrinsic: _nmm | oadu_pd

void storeu(float *p, F64vec2 A);
Stores the two double-precision floating-point values of A. No assumption is made for alignment.

Corresponding intrinsic: _nmm st or eu_pd

voi d | oadu(F32vec4 A, double *p)

Loads four single-precision floating-point values, copying them into the four floating-point values of A. No
assumption is made for alignment.

Corresponding intrinsic: _mm | oadu_ps

voi d storeu(float *p, F32vecd A);
Stores the four single-precision floating-point values of A. No assumption is made for alignment.

Corresponding intrinsic: _nmm st oreu_ps

Unpack Operators for Fvec Operators
F64vec2 R = unpack_| ow(F64vec2 A, F64vec2 B);
Selects and interleaves the lower double precision floating-point values from A and B.

Corresponding intrinsic: _nmm unpackl o_pd(a, b)

F64vec2 R = unpack_hi gh(F64vec2 A, F64vec2 B);
Selects and interleaves the higher double precision floating-point values from A and B.

Corresponding intrinsic: _nmm unpackhi _pd(a, b)

F32vec4 R = unpack_| ow(F32vec4 A, F32vec4 B);
Selects and interleaves the lower two single precision floating-point values from A and B.

Corresponding intrinsic: _mm unpackl o_ps(a, b)

329

F32vec4 R = unpack_hi gh(F32vec4 A, F32vec4 B);
Selects and interleaves the higher two single precision floating-point values from A and B.

Corresponding intrinsic: _mm unpackhi _ps(a, b)

Move Mask Operator
int i = nove_mask(F64vec2 A)

Creates a 2-bit mask from the most significant bits of the two double precision floating-point values of A,
as follows:

i :=sign(al)<<l | sign(a0)<<0

Corresponding intrinsic: _nmm novenmask_pd

int i = nove_nask(F32vec4 A)

Creates a 4-bit mask from the most significant bits of the four single precision floating-point values of A,
as follows:

i 1= sign(a3)<<3 | sign(a2)<<2 | sign(al)<<l | sign(a0)<<0

Corresponding intrinsic: _mm novenmask_ps

Classes Quick Reference

This appendix contains tables listing the class, functionality, and corresponding intrinsics for each class in
the Intel® C++ Class Libraries for SIMD Operations. The following table lists all Intel C++ Compiler
intrinsics that are not implemented in the C++ SIMD classes.

Logical Operators: Corresponding Intrinsics and Classes

Operator |Correspo |I1128vecl, |I64vec, |F64vec2 [F32vec4 |F32vecl
S nding I64vec?2, |I32vec,
Intrinsics [I32vec4, [l16vec,
I16vec8, |I8vec8
I8vecl6
&, &= _mm_and [si128 si64 pd ps ps
_[x]
I, |= - mm or _ |si128 si64 pd ps ps
[X]
A A= _mm _Xxor |[si128 si64 pd ps ps
_[x]
Andnot _mm _and [si128 si64 pd N/A N/A
not [x]

330

Arithmetic: Corresponding Intrinsics and Classes

Oper
ators

Corr
espo
ndin
g
Intrin
sic

164ve
c2

132ve
c4

116ve
c8

I8vec
16

132ve
c2

I16ve
c4

18vec
8

F64v
ec2

F32v
ec4

F32v
ecl

epi64

epi32

epil6

epi8

pi32

pil6

pi8

pd

ps

SS

epi64

epi32

epil6

epi8

pi32

pil6

pi8

pd

ps

SS

— 0

N/A

N/A

epil6

N/A

N/A

pil6

N/A

pd

ps

SS

/, 1=

— o]

N/A

N/A

N/A

N/A

N/A

N/A

N/A

pd

ps

SS

mul_hi
gh

N/A

N/A

epil6

N/A

N/A

pil6

N/A

N/A

N/A

N/A

mul_a

N/A

N/A

epilé

N/A

N/A

pil6

N/A

N/A

N/A

N/A

sqrt

N/A

N/A

N/A

N/A

N/A

N/A

N/A

pd

ps

SS

rcp

N/A

N/A

N/A

N/A

N/A

N/A

N/A

pd

ps

SS

rcp_nr

N/A

N/A

N/A

N/A

N/A

N/A

N/A

pd

ps

SS

331

Oper [Corr [I64ve|l32ve|ll6ve|l8vec |I32ve|ll6ve|IBvec |F64v [F32v [F32v
ators espo [c2 ([c4 [c8 16 c2 c4 |8 ec2 |ecd4 |ecl
ndin
g .
Intrin
sic
rsgrt [nm_ |N/A N/A N/A N/A N/A N/A N/A pd ps Ss
rsqr
t_[x
|
rsgrt_n{_nm_ |N/A N/A N/A N/A N/A N/A N/A pd ps Ss
r rsqr
t_[x
|
rTTn
sub
[x]
rTTn
mul _
[x]
Shift Operators: Corresponding Intrinsics and Classes
Oper |Corre |1128v |I64ve |I32ve |I16ve |I8vec |I64ve (I32ve (I16ve (I8vec
ators |spon |ecl |c2 c4d c8 16 cl c2 c4d 8
ding
Intrin
sic
>>>>=| mm_ |N/A |epi64 [epi32 [epil6 |N/A [si64 |pi32 [pil6 [N/A
srl N/A epi64 |[epi32 |[epilé | N/A si64 pi32 pil6 N/A
[x]~ |NA |N/A |epi32 |epilé [NA [N/A |pi32 |pil6 |N/A
N/A N/A epi32 |[epil6 | N/A N/A pi32 pil6 N/A
rTTn
srli
_[x]
rTm
sra_
_[x]
rTm
srai
_[x]
<<, <<=|_nmm_ |N/A epi64 |epi32 |epil6 |N/A si64 pi32 pil6 N/A
sl epi64 |epi32 |epil6 | N/A pi32 |pil6 | N/A
[x] |NnA si64
rnn
sl
_[x]

332

Comparison Operators: Corresponding Intrinsics and Classes

Oper |Corre |I32ve |I16ve |I8vec |I32ve |I16ve |I8vec |F64ve|F32ve|F32ve
ators |spon |c4 c8 16 c2 c4 8 c2 c4 cl
ding
Intrin
sic

cmpeq | m |epi32 |epil6 |epi8 pi32 pil6 pi8 pd ps ss

cmpneq(_nm_ |epi32 |epil6 |(epi8 pi32 pil6 pi8 pd ps Ss
npe |sil28 |sil28 |[sil28 |si64 si64 si64
[x

cmpgt nm |epi32 |epil6 |epi8 pi32 pil6 pi8 pd ps ss

cmpge [_nm_ |epi32 |epil6 |(epi8 pi32 pil6 pi8 pd ps Ss
npg |sil28 |sil28 |[sil28 |si64 si64 si64
[x

cmplt nmm |epi32 |epil6 |epi8 pi32 pil6 pi8 pd ps ss

cmple nmm |epi32 |epil6 |epi8 pi32 pil6 pi8 pd ps ss
sil28 [sil28 [sil28 |si64 si64 si64

cmpngt | nm_ |epi32 |epil6 |epi8 pi32 pil6 pi8 pd ps ss

333

Oper
ators

Corre
spon
ding
Intrin
sic

132ve
c4

116ve
c8

IBvec
16

132ve
c2

I16ve
c4

I8vec

F64ve
c2

F32ve
c4

F32ve
cl

cmpnge

m
cnpn
ge_|[

N/A

N/A

N/A

N/A

N/A

N/A

pd

ps

SS

cmnpnlt

N/A

N/A

N/A

N/A

N/A

N/A

pd

ps

SS

cmpnle

N/A

N/A

N/A

N/A

N/A

N/A

pd

ps

SS

* Note that _nm _andnot [y] intrinsics do not apply to the fvec classes.

Conditional Select Operators: Corresponding Intrinsics and
Oper |Corre |I32ve |I16ve |I8vec |I32ve |I16ve |I8vec |F64ve|F32ve|F32ve
ators |spon |c4 c8 16 c2 c4 8 c2 c4 cl

ding

Intrin

sic
select_ | _mm_ [epi32 |epil6 [epi8 pi32 pil6 pi8 pd ps ss
eq cnpe sil28 [sil28 |[sil28 |si64 si64 si64

g_[x |[sil28 |sil28 |sil28 |si64 si64 si64

1 sil28 |sil28 |sil28 |si64 |si64 | si64

rTm

and_

[yl

rTTn

andn

ot |

yl*

rTm

or |

y]

Classes

334

Oper |Corre |I32ve |I16ve |I8vec |I32ve |I16ve |I8vec |F64ve|F32ve|F32ve
ators |spon |c4 c8 16 c2 c4 8 c2 c4 cl
ding
Intrin
sic

select_ | mm_ |epi32 [epil6 |epi8 pi32 pil6 pi8 pd ps Ss
neq cnpe sil28 |[sil28 |[sil28 |[si64 si64 si64
g_[x sil28 |[sil28 |sil28 |si64 si64 si64
- sil28 [sil28 [si1l28 |si64 si64 si64

select_ | _mm_ [epi32 |epil6 [epi8 pi32 pil6 pi8 pd ps ss
gt npg sil28 |sil28 |[sil28 |[si64 si64 si64

[x si128 si128 | si64 si64 si64
- sil28 |[sil28si [sil28 | si64 si64 si64
128

select_ | _mm_ [epi32 |epil6 [epi8 pi32 pil6 pi8 pd ps ss
ge npg sil28 |[sil28 |[sil28 |[si64 si64 si64

[x si128 |sil28 |sil28 |si64 si64 si64
- sil28 [sil28 [sil28 |[si64 si64 si64

335

Oper |Corre |I32ve |I16ve |I8vec |I32ve |I16ve |I8vec |F64ve|F32ve|F32ve
ators |spon |c4 c8 16 c2 c4 8 c2 c4 cl

ding

Intrin

sic
select_|| nmm_ |epi32 [epil6 |epi8 pi32 pil6 pi8 pd ps Ss
t Cerl sil28 [sil28 [sil28 |si64 si64 si64

t [x |sil28 |sil28 [sil28 |si64 si64 si64

]_ sil28 |[sil28 |[sil28 |[si64 si64 si64

rrrn

and_

[y]

rrrn

andn

ot _[

yl*

rrrn

or |

y]
select || _nmm_ [epi32 |epil6 [epi8 pi32 pil6 pi8 pd ps ss
e crrpl sil28 |sil28 |[sil28 |[si64 si64 si64

e [X sil28 |[sil28 |[sil28 |[si64 si64 si64

]_ sil28 |sil28 |[sil28 | si64 si64 si64

rTm

and_

[y]

rnn

andn

ot |

yl*

m

or |

yl
select_ | _mm_ [N/A N/A N/A N/A N/A N/A pd ps ss
ngt [cnmpg

t [x

|
select_ | _mm_ [N/A N/A N/A N/A N/A N/A pd ps ss
nge |cnpg

e [x

|
select_ | _mm_ [N/A N/A N/A N/A N/A N/A pd ps Ss
nlt cnpl

t_[x

|
select_ | _mm_ [N/A N/A N/A N/A N/A N/A pd ps Ss
nle cnpl

e [x

|

336

Oper |Corre |I32ve |I16ve |I8vec |I32ve |I16ve |I8vec [F64ve
c2 c4

ators |spon |c4 c8
ding
Intrin
sic

16 c2 c4 8

F32ve

F32ve
cl

* Note that _nm_andnot [y] intrinsics do not apply to the fvec classes.

Packing and Unpacking Operators: Corresponding Intrinsics and Classes

Oper [Corr [I64ve|l32ve|ll6ve|l8vec |I32ve|ll6ve|IBvec |F64v |F32v [F32v
ators espo [c2 [c4 [c8 16 c2 c4 |8 ec2 |ecd4 |ecl

ndin

g .

Intrin

sic
unpack| _nm_|epi64 |epi32 [epil6 |epi8 |pi32 |pil6 (pi8 pd ps N/A
_high |unpa

ckhi

_[x]
unpack| nm_ |epi64 (epi32 |(epil6 |epi8 |pi32 [pil6 [pi8 pd ps N/A
_low |unpa

cklo

_[x]
pack_s| nmm |N/A |epi32 |epil6 [N/A [pi32 |pil6 |N/A |N/A [N/A [N/A
at pack

s _[x

|
packu_[_nm_ |N/A N/A epilé [N/A N/A pulé |N/A N/A N/A N/A
sat pack

us_|

X]
sat_ad | _nmm_ [N/A N/A epilé [epi8 |N/A pilé |pi8 pd ps ss
d adds

_[x]
sat_su | _nmm_ [N/A N/A epilé [epi8 |N/A pil6 |pi8 pil6 |pi8 pd
b subs

_[x]
Conversions Operators: Corresponding Intrinsics and Classes

Operators

Corresponding
Intrinsic

F64vec2Tolnt

_mmcvttsd si 32

F32vec4ToF64vec2 _mm cvtps_pd
F64vec2ToF32vecd _mm _cvt pd_ps
IntToF64vec2 _mm cvtsi 32_sd

337

Operators Corresponding
Intrinsic
F32vec4Tolnt _mm cvtt_ss2si
F32vec4Tols32vec? _mm cvttps_pi 32
IntToF32vec4 _mm cvtsi32_ss
Is32vec2ToF32vecs _mm cvt pi 32_ps

Programming Example

This sample program uses the F32vec4 class to average the elements of a 20 element floating point
array. This code is also provided as a sample in the file, AvgCl ass. cpp.

/1 1nclude Stream ng SIMD Extension Class Definitions
#i ncl ude <fvec. h>
/1 Shuffle any 2 single precision floating point froma

/
/1 into low 2 SP FP and shuffle any 2 SP FP fromb
/1 into high 2 SP FP of destination

#defi ne SHUFFLE(a, b,i) (F32vec4) _mm shuffle_ps(a,b,i)
#i ncl ude <stdio. h>
#defi ne Sl ZE 20

/1 d obal variabl es

float result;
_MM ALIGN 16 float array[Sl ZE];

//***

/1 Function: Add20ArrayEl ements

/1 Add all the elements of a 20 elenment array
//***

voi d Add20ArrayEl ements (F32vec4 *array, float *result)

F32vec4 vecO, vecl,
vecO = _mmload_ps ((float *) array); // Load array's first 4 floats

//***

/1 Add all elenments of the array, 4 elenments at a tine
/**

vecO += array[1];// Add el enents 5-8

vecO += array[2];// Add el enents 9-12
vecO += array[3];// Add elenents 13-16
vecO += array[4];// Add elenents 17-20

338

//***

/1 There are now 4 partial suns. Add the 2 lowers to the 2 raises,
/1 then add those 2 results together

//***

vecl = SHUFFLE(vecl, vecO, 0x40);
vecO += vecl,;

vecl = SHUFFLE(vecl, vecO, 0x30);
vecO += vecl,;

vecO = SHUFFLE(vecO, vecO, 2);

_mmstore_ss (result, vecO); // Store the final sum

void main(int argc, char *argv[])

{

int i;
/1 Initialize the array

for (i=0; i < SIZE i++)
?rray[i] = (float) i

/1 Call function to add all array el enents
Add20Ar r ayEl enents (array, &esult);

/1 Print average array elenent val ue
printf ("Average of all array values = %\n", result/20.);
printf ("The correct answer is %\n\n\n", 9.5);

339

