Intel® Fortran Compiler
User's Guide

Cpopyright 1996 - 2002 Intel Corporation
All rights reserved

Issued in USA

Document No. FL-600-06

Disclaimer

Information in this document is provided in connection with Intel products. No license, express or
implied, by estoppel or otherwise, to any intellectual property rights is granted by this document.
EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH
PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY
EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT,
COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Intel products are not intended
for use in medical, life saving, or life sustaining applications.

This Intel® Fortran Compiler User's Guide as well as the software described in it is furnished
under license and may only be used or copied in accordance with the terms of the license. The
information in this document is furnished for informational use only, is subject to change without
notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation
assumes no responsibility or liability for any errors or inaccuracies that may appear in this
document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means without the express written consent
of Intel Corporation.

Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel, Pentium, Pentium Pro, Itanium, MMX, Celeron, Xeon, and VTune are
trademarks or registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

* Other names and brands may be claimed as the property of others.

Copyright © Intel Corporation 1996 - 2002.

Table of Contents

ABOUT INTEL® FORTRAN COMPILER ... 13
Welcome to Intel® Fortran Compiler...........oooiiiiiiiiic e 13
Major Components of the Intel® Fortran Compiler Product.............ccvveiiiiiiiiiieiiiiiiiee e 13
What's NeW in ThiS REICASEuuuuuuiiiiiiiiiiiiiiiiiiiiiii e 13
Compiler for TWO ArChItECIUIESo ciieeece e e e 13
Improvements and NEW FEALUIESciiiiiiiiiiiiii e e e e e e e e e e e e eeeane 13
AULO-PArAllElIZALION.coi ittt ettt ittt it e e e e e eeee 14
OPENMPH SUDPOM ..ttt ettt ettt e ettt e e et e et e n e e e et e e e st e e e e e e e s bbann e e e e e eenbna e e eeees 14
Hyper-Threading TeChNOlOGY SUPPOITuuuuiiiiii s 14
OptiMiIzZiNg fOr IA-32 PrOCESSOIS.o i 14
Little-endian to Big-endian CONVEISIONuuuuuuiiiiiiiiii s 14
Optimizing for Itanium Processor Family ... 14
Optimization Reports (Itanium(TM) COMPIIEr)cooiiiiiiii e, 14
Features and BenefilS.ccooo 14
Product Web Site and SUPPOIT. ... 15
SYSEM REQUINEMENTS. ...uuuiii i i e e e e e e e et e e e e e e e e e et e e e e e e e eaenaaaa s 15
Minimum Hardware ReqQUIFEMENTSiiiiiiiieiiiii s e e ee e e e e e e e e e e e e e e e aara e e e e e eeeane 15
Operating SYsStemM REQUIFEMENTScciiiiiiiiiii e e et e e e e e e e e e e e e e e e e 16

o 0= TP PP PP PPUPPPPPRPIN 16
FLEXIM* EleCtroniC LICENSINGccoiiiiiiiiiee et e e e e e 16
ADOUL THIS DOCUMIBNT ...ttt s 16
HOW t0 USE ThiS DOCUMENTciiiiiii i 16
NOLAtION CONVENTIONS ... 17
Related PUBIICALIONSccciiiiiiiiii 17
Publications on Compiler OPtiMIZAtIONS.uuuuuuiiiiiiiiiiiiiiiii s 18
COMPILER OPTIONS QUICK REFERENCE GUIDEScccooovviiiiiiieeiiee, 20
Options Quick Reference GUIAES OVEIVIEWciiieeiiiiiiiiiiie e 20
Conventions used in the Options Quick Guide Tables..........cccccceeiiiiiiiiiiii e, 20
NeW ComPIler OPLIONSuvuiiii e e e e e e e e e aaaas 21
AlphabetiCal LIStINGi i e e e e et e e e e e e aaraa 23
Compiler Options Quick Reference Alphabeticalcoovvviiiiiiiiii i, 23
Functional Group LiStINGSuuuiiiiiiieece et e e e 39
Compiler Options by Functional Groups OVEIVIEWcceveeuuiiiiiieeeeieeeiiiiinse e e e eeeeeiinn e 39
KEY 10 the TADIES ... s 39
Customizing Compilation ProCess OPtiONS.........ccvvuuiiiiiiiieeiiieiiiis e e e e e 39
Fortran Compilation ENVIFONIMENT. ... eeeees 39
Alternate TOOIS AN LOCALIONS.uuiiiiiiiiiiiiiiiiiiiiiiii ettt eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 40

PrEPIOCESSING ... 40

COMIPIING. e 41
LIKINIG e 42
COoMPIBLEON OULPUL. ... 42
DBOUGGING e 43
LIDIAITES ... 43
DiagNOSHCS @N0 MESSAGES ... v 44
Runtime Diagnostics (IA-32 COmMPIIEr ONIY)........uuiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeee ettt eeeeeeeeeeeees 44
Compiler INfOrMatioN MESSBUESuuuuuruuiuiiiiiiiiiiiitiieiiieee s 45
Comment aNd WarNiNg MESSAQESuuuuuuuuuuuuuunuiuununuuinieeieaeeeeaeeeeeeeeeeeeeeeneeeeseeeeeeneeneannnanannnnnnnnnes 45

ETTON IMBSSAOES ...ttt ettt ettt oo e ettt e e b e e e e et e e e b e e e e et e e et e e e 45
Language Conformance OPLIONSuuiiiieiiiiiiiiiis e e et e e e e e e e e e e e e e aara e e e eeeeeanes 46
(D2 1= B Y/ 01O 46
SOUICE PIrOGIAMieeeitiii ettt e ettt e e ettt r e e et et e e e e e ettt et b r e e e e e e e e bbb n e e e e e e eesbna e e eenes 46
Arguments and Variables. ... a7
COMIMON BIOCKS ...ttt et e e et e e e e e s b et e e e e s e eas 48
Application Performance Optimizations OPtiONS..........cccvvvuiiiiiiiieerireeiies e e e e e e e eeenes 49
Setting OptMIZAtioN LEVELcoooiiiieee 49
Floating-point ArithMELIC PrECISIONuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiibib e 49
Processor Dispatch SUPPOrt (IA-32 ONIY)uuuiiiii s 50
INtErproCedUral OPLIMIZATIONSuuueeueeiiieeieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseesseseseseseseessessssesessssnsseensnnneeeee 51
Profile-guided OPtIMIZAIONSuiiiiiiii s 52
High-level Language OptiMiZatiONSuuuuuiiii s 52
PArallEliZAtION.eieiiiee e e 52
Vectorization (IA-32 ONIY)......ooiiiiiii 53
Optimization Reports (Itanium(TM) COMPIIEI)cooeiiiiieie e, 54
Windows* t0 LiNUX* MaPPING ..vvuuiiieeiiiiiiiiiiie e e e e e e e e e e e e aab e e e eaaeeeees 55
Windows* to Linux* Options CroSS-refereNCe.........coivveiiiieiiiiiii e e e e e 55
GETTING STARTED WITH THE INTEL® FORTRAN COMPILER.................... 72
Invoking Intel Fortran CoOmMPIIEToooiiiiiie e 72
Invoking from the Compiler Command LiNEc.uviiiii i, 72
Setting the Environment Variablesooiiii i 72
(070 4ol g TV oo I g TSI} o] - 73
Command Line With Make...........ooooiiii 73
] 01U L SRR 74
Default Behavior of the CoOmPpIleruiiiiiii e 74
Default BENAVIOT OVEIVIEW.eriiieiiee ettt s st e e e e s s e e e e e e e s s annnnees 74
Default Behavior of the Compiler OPLioNS............ciiiieiiiiiiiie e e 75
Data Setting and Language CONFOMANCE..........uuuuuuuuiiiiiiiii s 75
OPLMIZALIONS .. 76
COMPIBLION .. 77
MeSSAgES ANA DIAGNOSHICS ...t s 77
Disabling Default OPtIONSuuiiiiii e 77
Resetting Default DAt TYPESuuuuuuuuuuuiiiiiiiiiiiiiiiiiieeb s ssseeeennnen 78

Default LIbraries and TOOISiiu it e et e e e e e e e e e b e e e aa e ranas 78

TS 0 1]] 78
] T T 79
(O70] g0] o1 F= L iTo] g = 0 F= F-Y =T TR 79
Application DeVvelopMENL CYCIE.ocuuuiiiii e e e e e e e e e e et eeeeeeeanes 79
CUSTOMIZING COMPILATION ENVIRONMENT ... 81
Customizing Compilation EnVironMent OVEIVIEWcovviiiiiiieeeiieiiiie e 81
ENVIronment VariablesS...........oi i 81
Configuration File Environment Variablesccccoooiiiiiiiiiiii e, 82
08 @ o] 1o £ PP 82
CoNfIQUIALION FIlESo e e e e s 82
RESPONSE FIlES ..o e e e e e e e e e ea s 83
o [0 o [][RR 84
Fortran Compilation ENvironment (FCE)coooviiiiiiii i 84
FOE OVBIVIBW .. 84
Object Files and DiCtioNary FilES.......ccoiiuuuiiiii e e e e 84
Program Unit Catalog FilES........ccoiiiiiiii i e e e e e e aane 85
Specifying the Name and Path of the PUCLF ..., 85
GUIElNES fOr the PUCKLE ... 85

An Example of Development OrganiZation.............ccciveeeereeuiiiiiiieeeeeeeeiies s e e e eeeesnis e eeeeeene 86
The FCE Manager ULIITY.........ooii i e et s s e e e e e e e et s e e e e eeeanes 86
I TS = T = 89
ACHVALING The BINAET......eiiiiiiiiiiiiiiiiiiie ettt ettt ettt et e e e e e e eeeeeeeeeeeeeeeees 90
Advantages of USiNg the BINAEr ... 91
Dependent and Independent COmMPIlationcooiieiiiiieiiiiii e 91
Fortran Programs with or without MOAUIESccoooeiiiiiiiiii e 91
SMAll-SCAIE PrOJECES ... 91
Larger-SCale PrOJECES s 92
Fortran Programs WithOUt MOAUIES ... s 92
= =T o oo = 1o 0 T) = 92
CUSTOMIZING COMPILATION PROCESS ...t 94
Customizing Compilation ProCcess OVEIVIEWceiieeiiiiiiiiieiieeee et e e 94
Specifying Alternate Tools and LOCALIONScoeiieiiiiiiiiiice e 94
Specifying an Alternate Component (-Qlocation,tool,path)...........ccccccvvvviiiiiiiiiiiiiiiiiiiiiinnnn. 94
Passing Options to Other Tools (-QOpPtion,to0L0PLS)....cccevveiiii i, 95

R (=T 0T o ToT= 11 oo PO 95
PreproCeSSING OVEIVIEWuui i e it st e e e e et s e e e e e e e et s e e e e e e e e ettt s s eeeeeeeastaaaaaeeeeeeanes 95
PrEPrOCESSOr OPtIONS ... e 95
Preprocessing FOrtran FileS ... 96
Enabling Preprocessing with Compiler OPLiONS.uuuuuiiiiiiiii e 97

String Constants for IA-32 SYSLEIMS......coooiiiiiiiie e 97

Preprocessing Only: -E, -EP, -F, and -P............oooiiiiiii e 97
Searching for INCIUAE FlES...........oiiii e e 98
Specifying and Removing Include Directory Search: -l, -X ..., 98
Specifying an INClude DIr€CLONY, =l......cooo oo 98
RemMoVINg INCIUAE DIFECIOMES, =X s 98
Defining Macros, -D, -U @nd -Aouioiiii e aann 98
Predefin@d MACTOScoiiiiiiiii et 99
(@] 121 011119 T F 100
(70 ga] o1 = 14 To] N @ AVZ=T AV 1= Y 100
(070 ga] o1 F= 14 T0] @] o] 1o g 100
Controlling CoOMPIlALION........oooiiiie e 100
Controlling Compilation PREASESuuuuuuiiiiiiiiiiiiiii s 100
ALIBSING - 101
Translating Other Code 10 FOIIaN 101
Saving Compiler Version and Options INfOrMation, -SOX............uuuuuuuueruruieiiiiiieiiiiiiiieiieieeeeeeeeaen. 101
MONItONNG DAA SEINGS ...ttt 101
Specifying StruCture Tag AlIGNMENTSuuueeieiiiiieiiiiiieeiee b eenneennnnnnnnes 101
Allocation of Zero-initialized Variables, -n0bSS_iNit.............ccooviiiiiiiiiii e, 102
Monitoring Data fOr IA-32 SYSLEIMSeviiiiiiiiiiiiiiiiiiieiiieei ettt eee e eeeeeeeeeeeeeeeeeeeeeeeeeeeeeaaee 102
Correcting Computations for 1A-32 Processors, -0f_ChecK............couvvviviiiiiiiiiiiiiiiiiiiiiiiiiinnn. 102

The €DP REGISIEr USAQEuuuuiiiiiiiiiiiiiiiiiii s 102
Monitoring Data for ltanium(TM)-based SYStEMScuuiiiiiiiiiiiiiiiiiiiiiiiiieiieeeeeee e 102
Flushing to Zero Denormal Values, —ftZ..........cooooiiiii 102
Little-endian-to-Big-endian Conversion (IA-32) 102
Little-to-Big Endian Conversion Environment Variable ... 102
e 1o] oL [= PP PPPPPPPPPPPPPRt 103
Specifying Compilation OULPUL.........ccoiviiiiiiii e e e e e 104
Specifying Compilation OUIPUL OVEIVIEWcceeiiiiiiiieee e 104
DefaUlt OULPUL FIES.ttt 104
Specifying Executable FleS ... 105
SPeCifying ObJECt FIlES ..o 105
Specifying ASSEMDbIY FIlES ..o 106
Producing Assembly Files with Annotations and COMMENES.............ceevviviiiiiiiiiiiiiiiiiieiieeeeeeeeeens 106
Compiler Output OPLIONS SUMIMAIYccoiiiiiiie e 106
Using the Assembler to Produce Object Code..........ccovviviiiiiiiiiiiiiieie e e e 107
Assembly File Code EXAMPIEcccciiieeiicie e e e e 107
IS 1T] o] 1T o 1= PP 109
T] (1T RPN 109
Options to Link t0 TOOIS and LIbrariesccoieeeiiiiiiiiii e 109
Controlling Linking and itS OULPULuuuiiiieciieeiiiis et e e e e e 109
YU o] o] (=11 T o T 1] o 109
=T o 10 To o [T Lo O UURPPPPPPPN 110
Debugging OPtioNS OVENVIEWcceuuiiiiiie e i e e et e e e e e e et e e e e e e eestra e e eeaeeeane 110
Support for Symbolic DEDUGQING......ccovveiiiiiii e 110
Debugging and ASSEMBIINGuuuii s 110

Parsing for SYNtAX ONIYcii i e e e e e e et eeeeeeane 110

Compiling Source Lines with Debugging Statements, -DDccccovvvvviiiiiiiieeccceie e, 111
Debugging and OptimMIZatiONSuuiiiiiiiiieee e e e e e e e e e e e e e eeeane 111
-fp Option and Debugging (IA-32 ONIY) ...cooeiiiii 111
FORTRAN LANGUAGE CONFORMANCE OPTIONS.........ccci i, 114
Fortran Language OptioNS OVEIVIEWciiieeeiiiiiiiiiieie e eeeeeeie e e e e e eeaan e e e e e eenanes 114
Setting Integer and Floating-point Data TYPEScoeviiiiiiiiiiiiei e 114
[T C=To [- | = T PP 114

[oT 1T gl B o o[a1 - 114
SOUICe Program FEALUIES.iiiiiii e e e e e e e e e e e e et e e e e e e e eaaas 114
Program Structure and FOIMAL.............oiiiiiiiiiiiiiiii eeeanes 114
Compatibility with Platforms and COMPIlErS............uuiiiiiiiiiies e 114
EY o= 1oL O g = 1= T (= 115
LINE ToIMINALIOIS. .. 115
Setting Arguments and Variables. ... 115
Automatic Allocation of Variables t0 StaCKS............uuuuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiieiieieieeee. 116
Alignment, Aliases, IMPICIt NONEuuiiii i e 116
Allocating Common BIOCKSoiiiiiiicc e 117
Dynamic ComMON OPtiON........ccciiieiiiiiis e e e e e e ettt e e e e e e e et e e e e e e e eatr s e e e e eeeestea e aeeaeeennes 117
Allocating Memory to Dynamic Common BIOCKS............ccovvviiiiiiiiieeccceein e 117
Why Use @ DYNamiC COMIMONccoiiiiiiiiiii s ee et e e e e e et e e e e e e e et e e e e e e e e aaae e e e e e 118
Rules of Using Dynamic Common OPLiONueiiiieeriieeiiiinseeeeeeeeeiiies s e e e eeseessinnsseeeseeenne 118
OPTIMIZATIONS .o e e e e e e ans 119
OPtIMIZAtION LEVEIS. ... 119
Optimization LEVEIS OVEIVIEW........iiieeiieiiiiiii et e e e e et e e e e e e e eara e e e 119
Setting OPtiMIZAtION LEVEIS.........iiii i e e e 119
1= T T8 g @ o]0 0] o)1= PP PP PPPRPPPPPPPPPPPPPPIRY 120
1 Y2 o111 o | =T PP PP PPPPPPPPPPPPIRE 120
IA-32 and 1taniuM COMPIIEES.uuiiiiiiieiiiiiiiee ettt ettt e e ee e et eeeeeeeeeeeeeeeeeeeeeee 120
ReStricting OPtiMIZAtIONSi i e e e e e e e e e e et e e e e e eeeane 121
Floating-point Arithmetic OptimiZatioNScoovviiiiiiiiie e 121
Floating-point Arithmetic PreciSion OVEIVIEW..........c.cciiiieiiiieii e e e e eeeeeaees 121
SIMP OPLION . 121
SIMPL OPLION e 121
Floating-point Arithmetic Precision for [A-32 SYSEMSceeiiiiiiiiiiiies e 121
SPPEC_AIV OPHION .. 122
SPC{32|B4|B0F OPLION. ... 122
Rounding Control, -rCd, =P _POMT ... 122
Floating-point Arithmetic Precision for Itanium-based Systems...............cccvvvvviiiiiiienieenns 122
Contraction of FP Multiply and Add/Subtract Operations............cooovvviiiiiiiiii 122

P SPECUIBLION. ... 123

FP Operations EVAIUALIONuuuuuiiiiiiiiiiiiiiiiiiiii e 123

Controlling Accuracy of the FP RESUILSoooiiiiiiii e, 123

Maintaining and Restricting FP Arithmetic Precision...............ccccovvvviiiiii i 123
Processor Dispatch Extensions Support (IA-32 ONlY)ooooviiiiiiieii e, 124
Targeting a Processor and Extensions SUPPOrt OVEIVIEWccoeeevvvveviiiinieeeeeeeeiiiinn e 124
Targeting a ProCesSor, -tPP{N} . eeeeeiiiiiiiiiiiiiiiiiiiii ittt et eaeeraaaee 125
Optimizing for a Specific Processor Without Excluding Others.................uuueviiiiiiiiiiiiiiiiiiiiiiiinene 125
Exclusive Specialized Code with -X{i[M|KIW}.....coooiiiii 125
SX SUMIMIBIY ettt ettt e e e et ettt b e e e et e e e e b e e e e et et e e e e e et e e e e e e e e e e n e 126
Specialized Code With -aX{i{M[K|W} ...cooiiiiiiiiiiiiiiiiieeeeeeee e 126
SAX SUMIMAY. .. 126
Checking for PerformanCe GaiNcouiuriiiiiiieiiiiiiee ettt 127
Combining Processor Target and Dispatch OptionSoovviiiiiiiiiiicecc e 127
Example of -x and -ax CombBINAtIONSuuuiii s 128
Interprocedural Optimizations (IPO).........uuiiii i e, 128
PO OVEIVIEW ... 128
MUILITE TPO .. 129
MUITIfIE TPO OVEIVIEW ...ttt e e e e s 129
COMPIBLION PRESE ...ttt e 129
LINKAGE PRASEcoiiiiiiiiiiiiiiiiiiiee ettt ettt ettt ettt e et e et e eeaeaee 129
Compilation with Real Object Files, -Ip0_0bj.......coooiiiiiiiii 129
Creating a Multifile IPO EXecUtable..........ooooiiiiiiii 130
Creating a Multifile IPO Executable Using a Project Makefilecccooo 130
Analyzing the Effects of Multifile IPO, -ip0_C, -IPO_S.......iiiiiiiiiiiiiiiiiiiiiiiiiiieeieeeeeeeee e 131
Using -ip witn -QOPtioN SPECITIEISuvuuiiii i e e e 131
—QOPLION SPECITIEIS ... 131
Inline EXpansion of FUNCHONSuiiiiiii i e e e e e e eanes 132
Criteria for Inline FUNCLION EXPaNSIONoooiiiiiii e, 132
Controlling Inline Expansion of User FUNCLIONS............ooooiiiiii 133
Profile-guided OptiMiZatiONsSc.cooiiiiiiii e e e e e e eeaees 134
Profile-guided OptimizationS OVEIVIEW...........ccuuuuiiiiie e e e e e e e e e e e et eeeeeanes 134
LIS e 0=t a1 (=T I e (oo =y o PP PP P PP PPPPPPPPPPPPPPPPPPIRY 134
Added Performance With PGOoiiiiiiiiiiiiicc et 134
Profile-guided Optimizations Methodologycoiiieiiiiiiiiiie e 134
PGO PRESES ...ttt 134

2 F T ol = 1@ I @ o] 1 To] o 1< 136
Generating Instrumented Code, -prof_gen[X].......ccoooriiiiiiiii i 137
Generating a Profile-optimized Executable, -prof_USe...........cooovviiiiii, 137
FaNo AV 2= T g Tol=To I = 1@ I @ o] 1 o] o 1= 137
Specifying the Directory for Dynamic Information Files............oooooviiiiii, 137
Specifying Profiling Summary File.........oooo 137
Guidelines for Using Advanced PGOcoooiiiiiiiii 137
PGO Environment VariablesS ..., 138
Example of Profile-Guided Optimization.............ccoiiie i e e 138
FUNCHON OFAEE LISt .. 139
FUNCLION Order LISt OVEIVIEW.cciiiiiiiiiiiiiiiee ettt e s 139
(0157 Lo L= U o [=1 1 L= PP PP PPPPPPPPPPPPPPRt 139

FUNCHION Order LiSt ULIHITIEScvvuiiiiiieieiieee et e e e e e e e e e e e e e e e e b e e e ebaa e eees 139

The Profmerge ULIILYooooiieeeeeeeeee e 139

The Proforder ULIIEYccoooeee e 140
Comparison of Function Order Lists and IPO Code Layoutuueueueimiiimiiiiiiiiiiiiiiniiiineeens 140
Dump Profile Data ULooeiiiiiiiiiiiiiiiiiiiiiieieieeeeeeeeeeee ettt eeeeeeeeeees 141
Example of Function Order LiSt GENEratioN ... s 141
PGO API: Profile Information Generation SUPPOIT...........uuuiiiiieiiiieeiiiie e e eeeanns 142
PGO AP SUPPOI OVEIVIEW. ... s 142
The Profile IGS FUNCHONSuviiiiiiiiiiii ettt s e e e 142

The Profile IGS Environment Variable ... 142
Dumping Profile INfOrM@tION.uuiiiiiiii e 142
RECOMMENAEA USBGE.eiiiiiiiiiiiiiiiiiiiiiiiieeeee ettt ettt ettt ettt ettt e et et e eeeeeeeeeeeeeeeeeeeeeeeenne 143
Resetting the Dynamic Profile COUNLEISuuuuiuiiiiiiiiiiiiiiiiiiiiiiiiiii b eeeeeeeeeeeeeeeeeeeeeeeeeeee 143
RECOMMENAEA USBGE......eeiiiiiiiiiiiiiiiiiiiiiiiieeet ettt ettt ettt ettt ettt et et ee ettt e e et e eeaeeeeeeeeeeeeenne 143
Dumping and Resetting Profile INfOrmation................uuuuiiiiiiiiiiiiii s 143
RECOMMENUEA USBGE......eeiiiiiiiiiiiiiiiiiiiiiiieeeee ettt ettt ettt et et ee ettt ee e e e et eeeeeeeeeeeeennne 143
INterval Profile DUMIPINGeeeiiiiiiiiiiiieiiieie ettt sttt st s st e e s eeeeeseneeeeee 143
RECOMMENAEA USBGE......eiiiiiiiiiiiiiiiiiiiiiiiiiieee ettt ettt ettt ettt ettt e e ee ittt e e e eeeeeeeeeeeeeeeeennne 144
High-level Language Optimizations (HLO) ..o 144
HLO OVEIVIEW ... 144
(oo] o I = 153 £ 12 = (o] PP 145
Scalar Replacement (IA-32 ONIY) .. .o e 145
Loop Unrolling with -UNroll[N].......cooeeriiiii e e e e e e e e e eanes 145
Benefits and Limitations of LOOP UNFOIINGuuuuiiiiiii s 145
Memory Dependency With IVDEP DIr€CtIVE.........ccoiieiiiiiiiiiiii e e e 146
1= (o Vo PP 146
ParalleliZation ..o 147
Parallelization OPtioNS OVEIVIEW..........iiiiieiieeiii e e e e e et e e e e e e et e e eaeeenne 147
AULO-PArallEliZAtiONccceeee e e 147
ENabling AUtO-Parall@liZEruuei s 147
Auto-parallelization Environment VariablesS. ... 148
Guidelines for Effective Auto-parallelization USAgecoooiiiiiiiiiiiii 148
Analyzing Compiler for Auto-parallelization..............cccccciiiiiiiiiieeeeeee 148
Preparing for AUtO-paralleliZationeeeeeiieiiiiiiiii e 148
Threshold for Auto-paralleliZation.............cccooeeiiiieiiiiin e 148
Using AULO-ParalleliZationoouuuiiiii i e e 149
Auto-parallelization EXAMPIESuuuuiiiiiiiiiiiiiiii s 149
Auto-parallelizer's DIAagNOSHICciiiieeiiiie i e e e e e 151
TrOUDIESNOOtNG TIPS .. 151
IDIRSPARALLEL DIFECHVE.....c.itiiieiitiie ettt ettt ettt et e s e e e 151
Parallelization With OPENMP e e e e e e e eanes 151
CommaNd LINE OPLIONScooiiiieii e 152
(O] 01T o 1\Y | =S = TaTo F= 0 I @] o] 1 o] o KPS 153
OpenMP Fortran DireCtives and ClaUSES..........oooiiiiiiiiiii e, 153
OpenMP Environment Variables ... 153
OpenMP* Runtime Library ROULINESciiiiiiiiiiiiiie e e e 153

Intel EXtENSIONS 10 OPENMPYo e e e e e e e e e e e e eeeane 153

ENVIrONMENE VATADIES. ... 153
THread-18VEl IMALLOC()..eetttttiiiiiiiiiiiiiiiiteieeee ettt ettt ettt ettt et ettt ettt e et et e e eee et e eeeeeeeeeeeneees 153
Examples of OPENMP* USAQE.c.uuuuiiiiieeiieeiiii e e e e e et e eetis s s e e e e e e et e e e e e e eesttn s e eeaeeeane 154

A SImple DiffEr@NCE OPEIALONevtiiiiiiiiiiiiiiiiiiieieeeeee ettt ee ettt e ettt eeeeeeeeeeeeeeeeeeeeeeeeeseeeeeeeeeneee 154
TWO DiIffereNCE OPEIAOrS.ceviiiiiiiiiiiiiiiiiieiiet ettt ettt et ettt e eeeeeeeeeeaeeeeeeeeeeeeeeeeneee 154
Vectorization (JA-32 ONIY)euuiiiiiiiiiiiiiiiiiii e a e e e e e e e aeeeas 155
VA= Tex (o] 2= ViTa] T @ A= g T 155

RV /= Tox o] 4= g @] o] 1 o g 1 155
Vectorization Key Programming GUIAElINESoiiiiiiiiiiiiiiiin e 156
GUIEBIINES e 156
RESEIICHIONS ... 156
D= L= QD LY 01T [0 = o o] TR 157
Data DEPENUENCE ANGIYSIS.uuuiiiiiiiiiii s 157
[T} o J @0 11 11 Tod K= P 158
oo o I =bt(] oK o] Lo [1 o] 1= 158
TYPES Of LOOP VECIONZEMevviiiee e e e e e e e e e e e 160
Syl aaTTaTTaTo = T To @1 == Vg U o 160
Statements iNthe LOOP BOAYciiiiiiiiiiiiiii e e e e 160
Floating-point Array OPEIrAtiONSuuuuuiiiiiiiiiii s 160
INtEYET AITAY OPEIALIONSveeiteiieeeeiieeeeeeeeeeeee ettt ettt et e ettt et et e e ettt ettt et e e e e et e ee ittt eeeeeeeeeeteeteeteeeeeeeneee 161
Other OPEIALIONS.cciiie e 161
Language Support and DIr€CHIVESuii i i it e e e e e e e e e e e e e e e eeanes 161
IV/DEP DIFECLVE ...ttt ettt ettt sttt ettt e ettt s e e e s e e e e e e eeeeeeeennnes 161
Overriding Vectorizer's Efficiency HEUNSHCSooooiiiiiiii 162

The VECTOR ALWAYS DIFECHVEceviiiiiiiiiiiiiiiiiiiiiiieeiieieeneee 162

The VECTOR ALIGNED/UNALIGNED DIFECHVESccvvviiiiiiiiiiiieiiiiiiiiiiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 162

The NOVECTOR DIFECHVE ...ceeveiiiiiiiiiiiiiiiiiiiiiiieeeee ettt ettt et ettt et e ettt et eeeeeeeeeeeeeeeeeneees 163
VeCtorization EXAMPIEScouuiiiiii et e e e e e e e e e e e 163
Argument AlIASING: A VECIOI COPY .eveeriiiiiiiiiiiiiiiiieiieieetteereeeees 163
Data AlIGNIMENT. ... s 163
AlIGNMENT STFALEOY ..ot eeeeeieiii ettt ettt ettt et ettt e et et e ettt e eeeeeeeeeeeeeeeee 164
Loop Interchange and Subscripts: Matrix MUItiply.............iiiiiiieiiiiiie e 165
Optimizer Report Generation (Itanium(TM) Compiler)..........cccooeeiiiii 166
Specifying Optimizations to Generate REPOIMSiiiiieiiviiiiiiii e 166
The Availability of REPOIt GENEratioNccceiiiiiiiie e 167
LIBRARIES ..o e e 168
MaNAGING LIDIAIIES ...t 168
The Order of Passing the Files t0 LINKErcooviiiiiii i 168
Using the POSIX and Portability LIDraries...........ccoovvvviiiiiiiiiiiecececeeeiin e 169
INEI® SNArEd LIDIANIESevvviiiiiiiiiiiiiiiiiiiis s e e e e e e e e e e e e e e e e e e eeeaeens 169
Advantages of ThiS APPrOACKccoiiiiiiiii e e e e 169
] F= = To I o] = 1 Y @ [1= 169

10

Y E= I T o] = Y (=TT 170

Math LIDranes OVEIVIEWcooiiiiii i 170
Using Math Libraries with A-32 SYStEMSuuuiiiiieiiiieiie e e eeeeanes 171
Optimized Math Library PrimitiVeS.........ooooiiiiii 171
Programming with Math Library PrmitiVES.uiiiiiiii e 172
IEEE Floating-point EXCEPLIONS.uiii i e e e e e e e e e ee e e e e e e e e eenes 171
DBNOIMAL ... 172
DiVIAE-DY-ZEI0 EXCEPLION. ... 172
OVEITIOW EXCEPLION ... 173
UNAEITIOW EXCEPLION. ...ttt 173
Lg% T b (o= o] 1o o F PP PPPPPPPPINY 173

[\VZ=1TTo @] o 1] =i I8 St (oT=] o] 1 o o S 173
DIAGNOSTICS AND MESSAGESo 175
DIagnOStICS OVEIVIEWccoiiiiiiiiii it e e e e et s e e e e e e e e et e e e e aaaeeaaees 175
Runtime Diagnostics (IA-32 Compiler ONlY) ... 175
RUNtime DiagnNOStICS OVEIVIEWuuueiiiieeiiieeiiiii s e e e e e e e et s e e e e e e e ettt s e e e e eeeestan e s aeeaeeeanes 175
Optional RUNIIME ChECKScuiiiiii i e e e e e e e e e e e 175
POINEEIS, ~C A 176
AlIOCALADIE AITAYS ...eeeiiiiiiiiiiiiiieiitee ettt ettt ettt ettt et ettt et eee ittt eeeeeeeeeeeeeee 176
ASSUMEA-SNAPE AFTAYSeeeietiitiiiieitittieetet ettt ettt ettt ettt ettt ettt tte et te ettt eeeeeeeeeeeeeeeeeeeseeeeeseeeseeeeennees 176
Array Subscripts, Character Substrings, -CB..........ccoiiiiiiiiiii e 177
Unassigned Variables, -ClU...........oouiiiiii it e e e e e e e e e e e annes 177
NOLES ON VANADIES ... 177
Actual to Dummy Argument Correspondence, -CV........cooviiiiiiiiiieeeeeeis e 177
Generating DIiagnOStiC REPOIMSiiiiiieeiiie e e e e e e 178
DiagnoStiC REPOIT, =O{N]. .. .ueiiii s 178
Selecting a POSIMOMEM REPOIM.uuuuiiiiiiiiiiiiiiiiiiiii s 179
INVOKING @ POSIMOMEIM REPOI.........uiiiiiiiiiiiieiieiiieieeeieeeeeeeeeeeeeeeeeee e e eeses s e seeaeseeeeesseeeeeeeenesesnnneee 179
Postmortem RepOrt CONVENTIONS.uuutitiiiiiiiiiiiiieieiieieeeeteeteeeaee 179
e 1o] = PP PPPPPPPPPPPPPRt 179
Messages and Obtaining INformation................coooviiiii e, 181
Compiler INformation MESSAQES.cccvvvuiiiiii i e e e e e 181
D EoTo |10 1S (o Y T TSI ST= Vo = L P 181
Command-liNe DIAgNOSLICScooiieiiiee e 181
LanNQUAGE DIAGNOSHICS ... s 182
WaAINING MESSATES ... e eieeeeeiiiie it e e e e et e e e e e e e et e e e e et e e e ettt s e e e e teeeatta s e aeeeeeentrnaaaeaeees 182
Suppressing or Enabling Warning MESSAgES.ccooviiiiiiiiiiiieeee e 182
(070 00T 0= a1 A1V [T SF= Vo = 183
o) g =SS Vo [P 183
Suppressing or ENabling Error MESSAQES.cooviiiiiiiiiiieeee e 184
FALAI EITONS ... e 184
MIXING C AND FORTRAN ...ttt 185
MiXiNg C and FOMran OVEIVIEW.........uuuuuruuiiiiaiaassssaaa s saaa s s s s s s e e e e e e e aeaeaaeeaaaaaeaaaeaaeens 185

11

N F= a1 aTe I @XoT 0\ V7=T o] 1 185

Passing Arguments between Fortran and C Proceduresccoovvviiiiiiieiiveeiiiiiii e 185
Using Fortran Common BIOCKS from C.........ooouiiiiiiii e e e 185
= 10] 1= P 186
Fortran and C Scalar ArgUMENTS.oouiiii i e e e e eaaaees 187
Fortran and C Language DecClarations..............uuiiiiieiiiiiiiiiis e e e e e e e eanes 187
Example of Passing Scalar Data Types from Fortran to C............ccvieeiiiieeiieeiiiiiin e 187
Passing Scalar Arguments by Valuecccoooiiiiiiiiiiii e 188
Example of Passing Scalar Arguments from Fortran to C............cccviieiiiieeviveviiciini e 188

F N = N A AN €0 U] 0= o (P 188
F = YA = L= T 1Y/ o1 189
Example of Array Argumentsin Fortran and C..........oooovviiiiin 189
(O g T = Tor (=] g Y/ 0= 190
Example of Character Types Passed from Fortranto C............ccoovvvviiiiiiiieeiceeiiiiin e eeeeeeanns 190
Null-Terminated CHARACTER CONSIANTS......ccooiiiiiii i 190
(070 a0 011 a1/ 0 1= T TSP 191
Example of Complex Types Passed from Fortran to C............ccoovvvviiiiiiie e 191
RELUIMN VAIUES ... 192
RELUMN ValUE Dat@ TYP covruuuiiieeiiieiiiis e e ettt e e e e e ettt s e e e e e e e e ettt s e e e e e e eeattaa s e e eeaeeeane 192
Example of Returning Values from Cto FOrtranccccoeiie i, 192
Returning Character Data TYPES....cooooeii i 192
Example of Returning Character Types from C to Fortrancccooeeeii, 193
Returning CompleX TYPE Datal.........coovuiuiiiiiiieeeieeeee e e e e eeaees 193
Example of Returning Complex Data Types from C to Fortrancccoooeevvvveiiiiiiiieeennnnnn, 194
PrOCEAUIE NAIMES ...t 194
POINLEIS ... 195
Pointer Representation in Intel Fortran Compiler.............oioiiii i 195
Calling C Pointer-type Function from Fortranccccciiiiii v, 195
Calling C Pointer FUNCLION from FOMIanccovviiiiiiii s 185
IMPLCIE INTEITACE. ... i e e e e e eaaaees 196
Fortran Implicit Argument Passing DY AdArESSuuuuuumiiiiiiiiiii e 196
(o] o) A 1 (=] 1 = U = RPN 196
Fortran Explicit Argument Passing by AdAressS..........covvvvuiiiiniiie e e e 197
INTANSIC FUNCHIONS ...t e e e e e e e e e 197
REFERENCE INFORMATION ... 198
OpenMP* Reference INformationoooooiiiiiiiiii e 198
List of OpenMP* Standard Directives and ClaUSES............ceeiiieeiiiiiiiiiei e e e eeeanns 198
OPENMP* DIFECHVES ... 198
OPENMP CIAUSES ..., 199

List of OpenMP* Runtime Library ROULINEScoovviiiiiiii 199

12

(7o) g 0] o1 [T g I 4011 201

Maximum Size and NUMDET.........oooiii e e e e e e e e eanes 201
Additional INtriNSIC FUNCHONSuuuiiie e 202
Additional IntrinSiC FUNCHONS OVEIVIEWciicciiieeiiiie e e e e 202
537 010111770 1 TP PP PPN 202
DCMPLX FUNCLION. ... 202
LOC FUNCHION ... e 203
Argument and Result KIND Parameters.........ccovvuuiiiiiiiecccceeiis e e e 204
INtel® Fortran KIND ParametersSuiiiiiiiiiiiiiiii i et s e e e e et e e e e e e eeanaa s e e e e eeeanes 203
%REF and %VAL INtrinSiC FUNCHONSuiiiiicicceic e 204
List of Additional INtriNSIC FUNCLONScccoiiiiiiiiiii e e e e e e e e eanes 205
Intel Fortran Compiler KeY FleS.......coooiieiiiii e 208
Key Files Summary for IA-32 COMPIIENccoeeiiiiiii e eeeeanes 208
TDIN FIES . 208

DT o3 1= TN 209
Key Files Summary for [tanium(TM) COMPIIErcooceiiiiiiiiie e e e 210
TDIN FIES . s 210

DT o3 1= SN 211
LiStS Of ErTOr MESSAQES . .cevvviiiiii it e e e e e e e e e et e e e e e e eeaanes 213
Error Message LiStS OVEIVIEWuuuuiiieeeiieeiiii s e s e e e e et s e e e e e e e eatt s s e e e e e e eesttn s s e eeaeeenne 213
RUNIME EIrors (IA-32 ONIY)... oo e e e e s e e e e e e e e aar s e e e e eeeanes 213

F Y {To o= L1 o] g TN = ¢ (o] £ 215
Lo o101 7@ L1100 | =1 o PP 216
Little-Big ENdian CONVEISION EFTOIS.uuuuiiiiiiii e 221
Other Errors Reported by /O StatemMeNntsooooiiiiiiiiii 221
L[0T PPTT 221
LT TS o = o] =P 222
Ll oIS ol o o Tod=To [N { TN 1 (] PP 222
Y= L g 1T E= o I o) P 223
o=t 010 TN AV TS Vo =PI 223

13

About Intel® Fortran Compiler

Welcome to Intel® Fortran Compiler

The Intel® Fortran Compiler compiles code targeted for the I1A-32 Intel® architecture and Intel®
Itanium(TM) architecture. The Intel Fortran Compiler has a variety of options that enable you to
use the compiler features for higher performance of your application.

Major Components of the Intel® Fortran Compiler
Product

Intel® Fortran Compiler product includes the following components for the development
environment:

= Intel® Fortran Compiler for 32-bit Applications

= Intel® Fortran Itanium(TM) Compiler for Itanium-based Applications

The Intel Fortran Compiler for Itanium-based applications includes Intel® Itanium(TM) Assembler
and Intel Itanium(TM) Linker. This documentation assumes that you are familiar with the Fortran
programming language and with the Intel® processor architecture. You should also be familiar
with the host computer's operating system.

What's New In This Release

Compiler for Two Architectures

This document combines information about Intel® Fortran Compiler for 1A-32-based applications

and Itanium-based applications. 1A-32-based applications correspond to the applications run on

any processor of the Intel® Pentium® processor family generations, including the Xeon(TM)

processor. Itanium-based applications correspond to the applications run on the Intel®

Itanium(TM) processor.

The following variations of the compiler are provided for you to use according to your host

system's processor architecture and targeted architectures.

= Intel® Fortran Compiler for 32-bit Applications is designed for IA-32 systems, and its
command is | f C. The 1A-32 compilations run on any IA-32 Intel processor and produce
applications that run on 1A-32 systems. This compiler can be optimized specifically for one or
more Intel IA-32 processors, from Intel® Pentium® to Pentium 4 to Celeron(TM) and
Xeon(TM) processors.

= Intel® Fortran Itanium(TM) Compiler for Itanium(TM)-based Applications (native compiler) is
designed for Itanium architecture systems, and its command is €f C. This compiler runs on
Itanium-based systems and produces Itanium-based applications. Itanium-based
compilations can only operate on Itanium-based systems.

Improvements and New Features

= Code size optimization with - Ol

= Compilation time with - O2

= High-level Language optimizations with - O8

For new options in this release, see New Compiler Options.

14

Auto-parallelization

The - par al | el option detects parallel loops capable of being executed safely in parallel and
automatically generates multithreaded code for these loops. Automatic parallelization relieves the
user from having to deal with the low-level details of iteration partitioning, data sharing, thread
scheduling and synchronizations. It also provides the benefit of the performance available from
multiprocessor systems.

OpenMP* Support

The Intel® Fortran Compiler supports OpenMP API version 1.1 and performs code transformation
for shared memory parallel programming. The OpenMP support and auto-parallelization are
accomplished with the - openny options.

Hyper-Threading Technology support

Both auto-parallelizationa and OpenMP features support Hyper-Threading Technology. Hyper-
Threading Technology enables the operation of multiple logical processors to share execution
resources in each physical processor package. It increases system throughput when executing
multithreaded applications or when multitasked workloads are running concurrently.

Optimizing for IA-32 Processors

The - XWor - ax Wcompiler options generate Streaming SIMD Extensions 2 designed to execute
on a Pentium® 4 and Xeon(TM) processor system, see Processor Dispatch Extensions Support.
These options improve the performance of applications using processor-specific optimizations,
which take advantage of the each processor's architecture features. The inclusion of further
vectorizable loops such as threaded loops and search loops improves vectorization results. The

| VDEP and VECTOR directives enhance vectorization.

Little-endian to Big-endian Conversion

The Intel Fortran Compiler can now write unformatted sequential files in big-endian format and
read files produced in big-endian format. For details see Little-endian-to-Big-endian Conversion.

Optimizing for Itanium Processor Family

The Itanium architecture provides explicit parallelism, predication, speculation and other features
to bring up performance to even higher results. The architecture is highly scalable to fulfill high
performance server and workstation requirements.

New option - I vdep_par al | el enhances performance with the new | VDEP directive.

The floating-point arithmetic options (- I pf _... series) for Itanium-based applications enable
compiler to control optimizations for floating-point computations.

Optimization Reports

For 1A-32 applications, levels 4 and 5 have been added to the vectorization reports with
-vec_repor t.

For the Itanium-based applications, the - Opt _r epor t option and its varieties enable to
generate optimization reports of different detail level for a number of optimizations.

Features and Benefits

The Intel® Fortran Compiler enables your software to perform the best on Intel architecture-
based computers. Using new compiler optimizations, such as the whole-program optimization
and profile-guided optimization, prefetch instruction and support for Streaming SIMD Extensions
(SSE) and Streaming SIMD Extensions 2 (SSE2), the Intel Fortran Compiler provides high
performance.

15

Feature Benefit

High Performance Achieve a significant performance gain by using optimizations

Support for Streaming SIMD Advantage of new Intel microarchitecture

Extensions

Automatic vectorizer Advantage of parallelism in your code achieved automatically

Parallelization Automatic generation of multithreaded code for loops. Shared
memory parallel programming with OpenMP*,

Floating-point optimizations Improved floating-point performance

Data prefetching Improved performance due to the accelerated data delivery

Interprocedural optimizations Larger application modules perform better

Whole program optimization Improved performance between modules in larger applications

Profile-guided optimization Improved performance based on profiling the frequently used
procedure

Processor dispatch Taking advantage of the latest Intel architecture features while
maintaining object code compatibility with previous generations of
Intel® Pentium® Processors

Product Web Site and Support

For the latest information about Intel Fortran Compiler, visit the Intel Fortran documentation web
site where you will find links to:

= Fortran compiler home page

= Fortran compiler performance-related topics

= Marketing information

= Related topics on the http://developer.intel.com web site
For internet-based support and resources visit http://developer.intel.com/go/compilers.
For specific details on the Itanium architecture, visit the web site at
http://developer.intel.com/design/ia-64/index.htm.

System Requirements

The Intel® Fortran Compiler can be run on personal computers that are based on Intel®
architecture processors. To compile programs with this compiler, you need to meet the processor
and operating system requirements.

Minimum Hardware Requirements

IA-32 Compiler and Cross Compiler

= A system based on a Pentium®, Pentium® Pro, Pentium® with MMX(TM) technology,
Pentium® |1, Pentium® lll, Pentium® 4 or Xeon(TM) processor.
= 128 MB RAM
= 100 MB of disk space
Recommended: A system with Pentium® 111, Pentium 4 or Xeon processor and 256 MB of RAM

Itanium(TM) Compiler

= |tanium-processor-based system. The Itanium(TM)-based systems are shipped with all of
the hardware necessary to support this Itanium compiler.
= 512 MB RAM (1GB RAM recommended)

16

Operating System Requirements

IA-32 architecture:

Linux system with glibc 2.2.2 or 2.2.4 and kernel 2.4. The compiler has been validated with Red
Hat Linux* versions 7.1 and 7.2.

Itanium(TM) architecture:

Linux system with glibc 2.2.2 or 2.2.3 and kernel 2.4. The compiler has been validated with Red
Hat Linux version 7.1 for Intel Itanium-based systems.

To run Itanium(TM)-based applications you must have an Intel® Itanium(TM) architecture system
running the Itanium(TM)-based operating system from RedHat Linux* 7.1. ltanium(TM)-based
systems are shipped with all of the hardware necessary to support this product.

It is the responsibility of application developers to ensure that the operating system and processor
on which the application is to run support the machine instructions contained in the application.
For use/call-sequence of the libraries, see the library documentation provided in your operating
system. For GNU libraries for Fortran, refer to http://www.gnu.org/directory/gcc.html in case they
are not installed with your operating system.

Browser

For both architectures, the browser Netscape, version 4.74 or higher is required.

FLEXIm* Electronic Licensing

The Intel® Fortran Compiler uses the GlobeTrotter* FLEXIm* licensing technology. The compiler
requires valid Iicens.e file in thell I censes directory in the installation path. The default .
directory is/ opt /i nt el /| i censes and the license files have a file extension of . | i C.

About This Document

How to Use This Document

This User's Guide explains how you can use the Intel® Fortran Compiler. It provides information
on how to get started with the Intel Fortran Compiler, how this compiler operates and what
capabilities it offers for high performance. You will learn how to use the standard and advanced
compiler optimizations to gain maximum performance of your application.

This documentation assumes that you are familiar with the Fortran Standard programming
language and with the Intel® processor architecture. You should also be familiar with the host
computer's operating system.

f) Note:

This document explains how information and instructions apply differently to each targeted
architecture. If there is no specific indication to either architecture, the description is applicable for
both architectures.

17

Notation Conventions

This documentation uses the following conventions:

This type style

An element of syntax, a reserved word, a keyword, a file name, or a code
example. The text appears in lowercase unless uppercase is required.

This type style

Indicates the exact characters you type as input.

This type style

Command line arguments and option arguments you enter.

This type style

Indicates an argument on a command line or an option’s argument in the
text.

[opti ons]

Indicates that the items enclosed in brackets are optional.

{val ue| val ue}

A value separated by a vertical bar (]) indicates a version of an option.

(ellipses)

Ellipses in the code examples indicate that part of the code is not shown.

This type style

Indicates an Intel Fortran Language extension code example.

This type style

Indicates an Intel Fortran Language extension discussion. Throughout the
manual, extensions to the ANSI standard Fortran language appear in this

color to help you easily identify when your code uses a non-standard
language extension.

This type style Hypertext

Related Publications

The following documents provide additional information relevant to the Intel Fortran Compiler:

* Fortran 95 Handbook, Jeanne C. Adams, Walter S. Brainerd, Jeanne T. Martin, Brian T.
Smith, and Jerrold L. Wagener. The MIT Press, 1997. Provides a comprehensive guide
to the standard version of the Fortran 95 Language.

* Fortran 90/95 Explained, Michael Metcalf and John Reid. Oxford University Press, 1996.
Provides a concise description of the Fortran 95 language.

Information about the target architecture is available from Intel and from most technical
bookstores. Most Intel documents are available from the Intel Corporation web site at
www.intel.com. Some helpful titles are:

» Intel® Fortran Libraries Reference, doc. number 687929

= Intel® Fortran Programmer's Reference, doc. number 687928

= VTune® Performance Analyzer online help

= Intel Architecture Software Developer's Manual

= Vol. 1: Basic Architecture, Intel Corporation, doc. number 243190

= Vol. 2: Instruction Set Reference Manual, Intel Corporation, doc. number 243191

= Vol. 3: System Programming, Intel Corporation, doc. number 243192

= Intel® Itanium(TM) Architecture Application Developer's Architecture Guide

= Intel® Itanium(TM) Architecture Software Developer's Manual

= Vol. 1: Application Architecture, Intel Corporation, doc. number 245317

= Vol. 2: System Architecture, Intel Corporation, doc. number 245318

= Vol. 3: Instruction Set Reference, Intel Corporation, doc. number 245319

= Vol. 4: Itanium Processor Programmer’s Guide, Intel Corporation, doc. number 245319

18

Intel® Itanium(TM) Architecture Software Conventions & Runtime Architecture Guide
Intel® Itanium(TM) Architecture Assembly Language Reference Guide

Intel® Itanium(TM) Assembler User's Guide

Pentium® Processor Family Developer's Manual

Intel® Processor Identification with the CPUID Instruction, Intel Corporation, doc. number
241618

For developer’'s manuals on Intel processors, refer to the Intel’s Literature Center.

Publications on Compiler Optimizations

The following sources are useful in helping you understand basic optimization and vectorization
terminology and technology:

Intel® Architecture Optimization Reference Manual

Dependence Analysis, Utpal Banerjee (A Book Series on Loop Transformations for
Restructuring Compilers). Kluwer Academic Publishers. 1997.

The Structure of Computers and Computation: Volume |, David J. Kuck. John Wiley and
Sons, New York, 1978.

Loop Transformations for Restructuring Compilers: The Foundations, Utpal Banerjee (A Book
Series on Loop Transformations for Restructuring Compilers). Kluwer Academic Publishers.
1993.

Loop Parallelization, Utpal Banerjee (A Book Series on Loop Transformations for
Restructuring Compilers). Kluwer Academic Publishers. 1994,

High Performance Compilers for Parallel Computers, Michael J. Wolfe. Addison-Wesley,
Redwood City. 1996.

Supercompilers for Parallel and Vector Computers, H. Zima. ACM Press, New York, 1990.

Efficient Exploitation of Parallelism on Pentium® IIl and Pentium® 4 Processor-Based
Systems, Aart Bik, Milind Girkar, Paul Grey, and Xinmin Tian.

19

Compiler Options Quick
Reference Guides

Options Quick Reference Guides

Overview

This section provides three sets of tables comprising Intel® Fortran Compiler Options Quick

Reference Guides:

= Alphabetical Listing, alphabetic tabular reference of all compiler and compilation as well as

linker and linking control, and all other options implemented by the Intel Fortran Compiler
available for both IA-32 and Intel® Itanium(TM) compilers as well as those available

exclusively for each architecture.

= Summary tables for IA-32 and Itanium compiler features with the options that enable them

= Compiler Options for Windows* and Linux* Cross-reference

Conventions used in the Options Quick Guide

Tables

[-]

indicates that option is ON by default, and if option includes
"- " the option is disabled; for example, - C€rr s-
disables printing errors in a terse format.

[n]

indicates that the value in[] can be omitted or have
various values; for example, in - unr ol | [n] option, n
can be omitted or have diffrerent values starting from 0.

Valuesin{} with
vertical bars

are used for option's version; for example, option
-1 { 2| 4| 8} has these versions: -i 2,-i4,-1i 8.

{n}

indicates that option must include one of the fixed values
for n; for example, in option - Zp{ N}, n can be equal to 1,
2,4,8,16.

Wordsint hi s
st yl e following an
option

indicate option's required argument(s). Arguments are
separated by comma if more than one are required. For
example, the option - Qopt i on, t ool , opt S looks in
the command line like this:

pronpt>i fc -Qoption,link,-w myprog.f

20

New Compiler Options

The following table lists new options in this release. See Conventions Used in the Options Quick

Guide Tables.

* Options specific to the Itanium(TM) architecture (Itanium(TM)-based systems only)

* Options available for both 1A-32 and Itanium architecture

-fsource-asm

Option Description Default
_falias Enables aliasing in program. |ON
Ifore. ..
_fno-alias Disables aliasing in program. |OFF
Ifore. ..
. Enables aliasing across ON
-ffnalias functions.
Ifore. ..
. Disables aliasing across OFF
-fno-fnalias functions, but enables aliasing
across calls.
hore. .. |
Produces assembly file with OFF
-fcode-asm optional code byte information
hore. .. |
Produces assembly file with OFF

optional high-level source code
annotations.

More. .

-fverbose-asm

Produces assembly file with
compiler comments including
compiler version and options
used.

More. .

ON

-f nover bose-asm

Produces assembly file without
compiler comments.

More. .

OFF

-ftz
Itanium compiler

Flushes denormal results to
Zero.

More. .

OFF

-1 PF_fma[-]
I tani um conpi |l er

Enables/disables the
contraction of floating-point
multiply and add/ subtract
operations into a single
operation.

hore. .. |

ON

-1 PF_f p_specul ati on
node
I tani um conpi |l er

Sets the compiler to speculate
on fp operations in one of the
following modes:

f ast : speculate on fp

-1 PF_f p_specul ati on
f ast

21

operations;

saf e: speculate on fp
operations only when it is safe;
st ri ct: enables the
compiler’s speculation on
floating-point operations
preserving floating-point status
in all situations; same as Of f
in the current version.

of f : disables the fp

speculation.

hore. .. |
-IPF_flt_eval _ -IPF_flIt _eval _ OFF
net hodO net hodO directs the compiler

Itanium compiler

to evaluate the expressions
involving floating-point
operands in the precision
indicated by the program.

hore. .. |

-IPF_fltaccl-]
Itanium compiler

Enables/disables the compiler
to apply optimizations that
affect floating-point accuracy.
By default, the compiler may
apply optimizations that affect
floating-point accuracy.

-1 PF_f It acc- disables
such optimizations.

-1 PF_fltacc- iseffective
when -

is on.
More. .

ON

-ivdep_parallel Indicates there is absolutely no |OFF
Itanium compiler loop-carried memory
dependency in the loop where
| VDEP directive is specified.
hore. .. |
-opt_report Generates optimizations report |OFF
Itanium compiler and directs to stderr upless
-opt _report _fileis
specified.
More.
-opt _report_file Specifiesthe f i | enane to |OFF

filenane
Itanium compiler

hold the optimizations report.
Ifore. ..

-opt _ report | evel
{m n| med| max}
Itanium compiler

Specifies the detail level of the
optimizations report.

hore. .. |

-opt _ report_ | evel
m n

-opt _report_phase
phase
Itanium compiler

Specifies the optimization to
generate the report for. Can be
specified multiple times on the
command line for multiple

OFF

22

optimizations.
hore. .. |

-opt_report_help
Itanium compiler

Prints to the screen all available
phases for

-opt _report _phase.
hore. .. |

OFF

-opt _report _routine
routine_substring
Itanium compiler

Generates reports from all
routines with names containing
the subst ri ng as part of
their name. If not specified,
reports from all routines are
generated.

More. .

OFF

-paral |l el

Enables the auto-parallelizer to
generate multithreaded code
for loops that can be safely
executed in parallel.

More. .

OFF

- par _t hreshol dn

Sets a threshold for the auto-
parallelization of loops based
on the probability of profitable
execution of the loop in parallel,
N=0 to 100.

hore. .. |

n=75

- par _report
{0] 1] 2| 3}

Controls the auto-parallelizer’'s
diagnostic levels.

Ifore. .. |

-par _ reportl

Alphabetical Listing

Compiler Options Quick Reference Alphabetical

The following table describes options that you can use for compilations you target to either 1A-32-
or Itanium-based applications or both. See Conventions Used in the Options Quick Guide Tables.
+ Options specific to 1A-32 architecture (IA-32 only)
* Options specific to the Itanium(TM) architecture (Itanium(TM)-based systems only)

* Options available for both I1A-32 and Itanium architecture

Option Description Default
- 0f check Enables a software patch for OFF
IA-32 compiler Pentium processor Of erratum.
More.
1 Executes any DOloop at least OFF

once. Same as - onet ri p.
More. .

23

-72, -80, -132

Specifies 72, 80 or 132 column
lines for fixed form source only. The
compiler might issue a warning for
non-numeric text beyond 72 for the
- 72 option.

hore. .. |

-72

Removes all predefined macros.
Issues a warning if OpenMP does
not work correctly.

hore. .. |

OFF

-align

Analyzes and reorders memory
layout for variables and arrays.
(Same as - Zp{ n}.)

Ifore. .. |

To disable, use the - noal i gn
option (default is OFF)

ON

-ansi [-]

Enables (default) or disables
assumption of the programs ANSI
conformance.

hore. .. |

ON

-auto

Causes all variables to be allocated
on the stack, rather than in local
static storage. Does not affect
variables that appear in an

EQUI VALENCE or SAVE
statement, or those that are in
COMMON. Makes all local variables
AUTOVATI C.

More. .

OFF

- aut odoubl e

Sets the default size of real
numbers to 8 bytes; same as - I' 8.

More. .

OFF

-aut o_scal ar

Makes scalar local variables
AUTOVATI C.

More. .

ON

-ax{i [MKW

IA-32 compiler

Generates code that is optimized
for a specific processor, but that will
execute on any IA-32 processor.
Compiler generates multiple
versions of some routines, and
chooses the best version for the
host processor at runtime indicated
by processor-specific codes i
(Pentium® Pro), M(Pentium with
MMX(TM) technology), K (Pentium
1), and W(Pentium 4 and
Xeon(TM)).

hore. .. |

OFF

24

. Dynamically links libraries at run |OFF
- Bdynami ¢ time. Compared to static linking,
results in smaller executables.
Enables the Intel® Fortran OFF

- bd, pr ognane

Compiler binder to generate a list of
objects to build a PROGNAME.

hore. .. |

Stops the compilation process after
an object file (. 0) has been
generated.

hore. .. |

OFF

- C90

Links with an alternative I/O library
(I i bCEPCF9O0. a) that supports
mixed input and output with C on
the standard streams.

hore. .. |

OFF

-C
IA-32 compiler

Equivalent to: (- CA, - CB, - CS,
- CU, - CV) extensive runtime
diagnostics options.

hore. .. |

OFF

- CA
IA-32 compiler

Generates runtime code, which
checks pointers and allocatable
array references for nil. Should be
used in conjunction with - d{ n} .

More. .

OFF

-CB
IA-32 compiler

Generates runtime code to check
that array subscript and substring
references are within declared
bounds. Should be used in
conjunction with - d{ n}.

hore. .. |

OFF

-CS
IA-32 compiler

Generates runtime code that
checks for consistent shape of
intrinsic procedure. Should be used
in conjunction with - d{ n} .
Ifore. ..

OFF

-CU
IA-32 compiler

Generates runtime code that
causes a runtime error if variables
are used without being initialized.
Should be used in conjunction with
-d{n}.

hore. .. |

OFF

-CV
IA-32 compiler

On entry to a subprogram, tests the
correspondence between the actual
arguments passed and the dummy
arguments expected. Both calling
and called code must be compiled
with - CV for the checks to be
effective. Should be used in

OFF

25

conjunction with - d{ n} .
hore. .. |

-cerrs[-]

Enables/disables errors and
warning messages to be printed in
a terse format for diagnostic
messages.

More. .

OFF

-cl,file

Specifies a program unit catalog list
file in which to search for
referenced modules.

More. .

OFF

-cm

Suppresses all comment
messages.

More. .

OFF

-common_ar gs

Assumes by reference subprogram
arguments may alias one another.

hore. .. |

OFF

- cpp{ n}

Sameas -fpp{n}.
More...l

OFF

Compiles debugging statements
indicated by the letter Din column 1
of the source code.

hore. .. |

OFF

- DX

Compiles debugging statements
indicated by the letters X in column
1 of the source code.

hore. .. |

OFF

- DY

Compiles debugging statements
indicated by the letters Y in column
1 of the source code.

hore. .. |

OFF

-d{ n}
IA-32 compiler

Sets diagnostics level as follows:
-dO - displays procname line

- d1 - displays local scalar
variables

- d2 - local and common scalars
- d>2 - display first n elements of
local and COMMON arrays, and all
scalars.

hore. .. |

OFF

- Dname[={#| t ext }]

Defines a macro name and
associates it with the specified
value.

hore. .. |

OFF

- doubl et enps

Ensures that all intermediate results
of floating-point expressions are
maintained in at least double

OFF

26

precision.
Ifore. ..

-dps, -nodps

Enable (default) or disable DEC*
parameter statement recognition.

More. .

-dryrun

Show driver tool commands but do
not execute tools.

More. .

Preprocesses the source files and

writes the results to _ st dout. If

the file name ends with capital F,

the option is treated as
-fpp{n}.

hore. .. |

OFF

-EP

Preprocesses the source files and
writes the results to stdout omitting
the #l 1 ne directives.

hore. .. |

OFF

-extend_source

Enables extended (132-character)
source lines. Same as - 132.

More. .

OFF

-F

Preprocesses the source files and
writes the results to file.

More. .

OFF

-falias

Enables aliasing in program.
Ifore. ..

ON

-fno-alias

Disables aliasing in program.
hore. .. |

OFF

-ffnalias

Enables aliasing across functions.
Ifore. ..

ON

-fno-fnalias

Disables aliasing across functions,
but enables aliasing across calls.

More. .

OFF

-fcode_asm

Produces assembly file with
optional code byte annotations.

More. .

OFF

-fsource_asm

Produces assembly file with
optional high-level source code
annotations.

hore. .. |

OFF

-fverbose-asm

Produces assembly file with
compiler comments including
compiler version and options.

More. .

ON

27

-f nover bose-asm

Produces assembly file without
compiler comments.

hore. .. |

OFF

-FI

Specifies that the source code is in
fixed format. This is the default for
source files with the file extensions
for,.f,or.ftn.

More. .

OFF

- f p
IA-32 compiler

Disables the use of the ebp
register in optimizations. Directs to
use the ebp-based stack frame for
all functions.

hore. .. |

OFF

- f pp{n}

Runs the Fortran preprocessor

(f pp) on all Fortran source files
(f,.ftn,.for,and.f90
files) prior to compilation.

N=0: disable CVF and #directives
N=1: enable CVF conditional
compilation and #directives
(default)

N=2: enable only #directives,
N=3: enable only CVF conditional
compilation directives.

hore. .. |

-fppl

-fp_port
IA-32 compiler

Rounds floating-point results at
assignments and casts. Some
speed impact.

hore. .. |

OFF

-FR

Specifies that the source code is in
Fortran free format. This is the
default for source files with the

. T 90 file extensions.

hore. .. |

OFF

-ftz

Itanium compiler

Flushes denormal results to zero.
More. . |

OFF

-9

Generates symbolic debugging
information and line numbers in the
object code for use by source-level
debuggers.

More. .

OFF

Prints source listing to stdout
(typically your terminal screen) with
the contents of expanded

I NCL UDE files.

hore. .. |

OFF

Prints a source listing to stdout,
without contents of expanded

OFF

28

I NCLUDE files.

Ifore. ..
_hel p Prints help message. OFF
Ifore. ..
_i{2] 4] 8) Defines the default KI NDfor | . ,
integer variables and constants in
2, 4, and 8 bytes.
hore. .. |
e Runs independent Fortran OFF
compilation without accessing and
updating Fortran compilation
environment (FCE).
hore. .. |
1dir Specifies an additional directory to [OFF
search for include files whose
names do not begin with a slash (/).
hore. .. |
. . Enables to link Intel-provided OFF
-i_dynam c libraries dynamically.
Ifore. ..
_inplicitnone Enables the | MPLI CI T NONE. |OFF
Ifore. ..
o . . Keep the source position of inlined |OFF
inl'ine_debug_info code instead of assigning the call-
site source position to inlined code.
Ifore. ..
_i Enables single-file interprocedural |OFF
P optimizations.
Ifore. ..
o . . Disables full or partial inlining that |ON
i p_no_inlining would result from the - i p
interprocedpral optimizations.
Requires -1 p or -1 pPO.
hore. .. |
-ip_no_pinlining Disables partial inlining. Requires |OFF
IA-32 compiler -1 por-1po.
Ifore. .. |
-1 PF_frma[-] Enables/disables the contraction of |ON

Itanium compiler

floating-point multiply and add/
subtract operations into a single
operation.

hore. .. |

-l PF_f p_specul ati on
node
Itanium compiler

Sets the compiler to speculate on fp
operations in one of the following
modes:

f ast : speculate on fp
operations;

-1 PF_f p_specul ati on
f ast

29

saf e: speculate on fp operations
only when it is safe;

stri ct: enables the compiler’s
speculation on floating-point
operations preserving floating-point
status in all situations; same as

of f in the current version.

of f : disables the fp speculation.

More. .

-IPF_flIt _eval _

nmet hodO
Itanium compiler

-IPF_flt _eval nethodO
directs the compiler to evaluate the
expressions involving floating-point
operands in the precision indicated
by the program.

hore. .. |

OFF

-1 PF _fltacc|[-]
Itanium compiler

Enables/disables the compiler to
apply optimizations that affect
floating-point accuracy. By default,
the compiler may apply
optimizations that affect floating-
point accuracy. - | PF_fl tacc-
disables such optimizations.

-1 PF_fltacc- iseffective

when - is on.
More. .

ON

-i po

Enables interprocedural
optimization across files. Compile
all objects over entire program with
multifile interprocedural
optimizations.

hore. .. |

OFF

-ipo_c

Optimizes across files and
produces a multifile object file. This
option performs optimizations as

-1 po, but stops prior to the final
link stage, leaving an optimized
object file.

hore. .. |

OFF

-1 po_obj

Forces the generation of real object
files. Requires -1 pPO.

hore. .. |

IA-32: OFF Itanium
Compiler: ON

-ipo_S

Optimizes across files and
produces a multifile assembly file.
This option performs optimizations
as - | po, but stops prior to the
final link stage, leaving an
optimized assembly file.

hore. .. |

OFF

30

-ivdep_parall el
Itanium compiler

Indicates there is absolutely no
loop-carried memory dependency in
the loop where | VDEP directive is
specified.

More. .

OFF

-Kpic, -KPIC

Generates position-independent
code.

More. .

OFF

-Ldir

Instructs linker to search di r for
libraries.

More. .

OFF

- | nane

Links with a library indicated in
nane.

More. .

OFF

- | ower case

Controls the case of routine names
and external linker symbols to all

lowercase characters. _MOYE--- |

ON

Maintains declared floating point
precision as well as conformance
to the IEEE 754 standards for
floating-point arithmetic.
Optimization is reduced
accordingly.

More. .

OFF

_npl

Restricts floating point precision to
be closer to declared precision.
Some speed impact, but less than -
mp.

More. .

OFF

- nbs

Treats backslash (\) as a normal
graphic character, not an escape
character.

More. .

OFF

-nobss _init

Disables placement of zero-
initialized variables in BSS (using
DATA section)

hore. .. |

OFF

-nolib_inline

Disables inline expansion of
intrinsic functions.

hore. .. |

ON

- nol ogo

Suppresses compiler version

information. M

ON

- NuUsS

Disables appending an underscore
to external subroutine names.

hore. .. |

OFF

31

-nusfile

Disables appending an underscore
to subroutine names listed in
file.

More. .

OFF

-0-X2
IA-32 compiler

Optimize for speed. but disable
some optimizations that increase
code size for a small speed benefit.
Disable option - f p.

More. .

OFF

- 01
Itanium compiler

- O1 turns off software pipelining to
reduce code size. Optimizes to
favor code size. Enables the same
optimizations as - O2 except for
loop unrolling.

More. .

OFF

Optimizes for speed, but disables
some optimizations that increase
code size for a small speed benefit.
Default.

hore. .. |

ON

Disables optimizations.
hore. .. |

OFF

Enables - O2 option with more
aggressive optimization, for
example, loop transformation.
Optimizes for maximum speed, but
may not improve performance for
some programs.

hore. .. |

OFF

-ofile

Indicates the executable file name
infil e;forexample,
-onyfile.

Combined with - S, indicates
assembly file or directory for
multiple assembly files.

Combined with - C, indicates object
file name or directory for multiple
object files.

hore. .. |

OFF

-onetrip

Executes any DOloop at least
once. (Identical to the

- 1 option.) M

OFF

- opennp

Enables the parallelizer to generate
multithreaded code based on the
OpenMP directives. This option
implies that - f pp is ON.

hore. .. |

OFF

32

Controls the OpenMP parallelizers

-opennp_ : : -opennp _reportl
report{0| 1| 2} diagnostic levels.
-opt_report Generates optimizations report and |[OFF

Itanium compiler

directs to stderr unless
- opt _report _file is specified.
hore. .. |

-opt _report _file
filenanme
Itanium compiler

Specifies the f i | enamne to hold
the optimizations report.

More. .

OFF

-opt _report | evel
{m n| med| max}
Itanium compiler

Specifies the detail level of the
optimizations report.

More. .

-opt _ report_ | evel
m n

-opt _report_phase Specifies the optimization to OFF
phase generate the report for. Can be
Itanium compiler specified multiple times on the
command line for multiple
optimizations.
More.
-opt _report _hel p Prints to the screen all available |OFF

Itanium compiler

phases for - opt _report _
phase.

More. .

-opt _report_routine
routine_substring
Itanium compiler

Generates reports from all routines
with names containing the

subst ri ng as part of their
name. If not specified, reports from
all routines are generated.

hore. .. |

OFF

Preprocesses the fpp files and
writes the results to files named
according to the compilers default
file-naming conventions.

More. .

OFF

- pad, -nopad

Enables/disables changing variable
and array memory layout.

More. .

- nopad

- pad_source

Enforces
blanks at

More. .

the acknowledgment of
the end of a line.

OFF

-paral |l el

Enables the auto-parallelizer to
generate multithreaded code for
loops that can be safely executed in
parallel.

More. .

OFF

-par _threshol d

Sets a threshold for the auto-
parallelization of loops based on the
probability of profitable execution of

n=75

33

the loop in parallel, N=0 to 100.
hore. .. |

Controls the auto-parallelizer’'s

i Bfarrzleg?r t diagnostic levels. -par_ reportl
More. |
- pc32 Enables floating-point significand | c64
- pc64 precision control as follows: P
- pc80 - pc32 to 24-bit significand
IA-32 compiler - pc 64 to 53-bit significand, and
- pc 80 to 64-bit significand
hore. .. |
) : : Enables linking to the POSIX library|OFF
posi xIib (i bPOSF90. a) in the
compilation.
More.
-prec _div Improves precision of floating-point |OFF
IA-32 compiler divides. Some speed impact.
More.
-prefetch|-] Enables or disables prefetch ON
IA-32 compiler insertion (requires - C3).
More.
. . Specifies the directory to hold OFF
-prof _dirdir profile information in the profiling
output files, * . dyn and * dpi .
hore. .. |
Instruments the program for OFF
-prof_gen profiling: to get the execution count
of each basic block.
hore. .. |
) . . Specifies file name for profiling OFF
prof filefile summary file.
hore. .. |
Enables the use of profiling OFF
-prof_use dynamic feedback information
during optimization.
More.
) Suppresses compiler output to OFF
4 standard error, st derr.
More.
) Enables dynamic allocation of given|OFF
" Sfjwcgrﬁkz " COMMON blocks at run time.
’ T More.
_Qinstall dir Sets di r as aroot directory for ~ |OFF

compiler installation.
hore. .. |

34

-Q ocation,
t ool , path

Sets pat h as the location of the
tool specified by t ool .

hore. .. |

OFF

-Q occom
"bl k1, bl k2, ..."

Enables local allocation of given
COMMON blocks at run time.

hore. .. |

OFF

-Qoption, tool, opts

Passes the options, Opt S, to the
tool specified by t ool .

More. .

OFF

-qp, -p

Compile and link for function
profiling with UNIX prof tool.

More. .

OFF

-r{4]| 8| 16}

Defines the KI ND for real variables
in 4 (default), 8, and 16 bytes.

- 1 8: change the size and
precision of default REAL entities
to DOUBLE PRECI SI ON. Same
as the - aut odoubl e.

- r 16: change the size and
precision of default REAL entities
to REAL (KI ND=16)

hore. .. |

-r4

-rcd
IA-32 compiler

Enables efficient float-to-integer
conversions.

More. .

OFF

-S

Produces an assembly output.
Ifore. ..

OFF

-save

Saves all variables (static
allocation). Opposite of - aut 0.

More. .

ON

-scal ar_rep[-]
IA-32 compiler

Enables or disables scalar
replacement performed during loop
transformations (requires - O3).

hore. .. |

OFF

- sox| -]
IA-32 compiler

Enables (default) or disables saving
of compiler options and version in
the executable.

Itanium compiler: accepted for
compatibility only.

More. .

IA-32: ON

-shar ed

Instructs the compiler to build a
Dynamic Shared Object (DSO)
instead of an executable.

hore. .. |

OFF

-static

Enables to link shared libraries
(. SO) statically.

OFF

35

- synt ax

Enables syntax check only. Same
as-y.
Ifore. ..

OFF

-Tffile

Compiles f i | e as a Fortran
source.

More. .

OFF

-t pp{ 5] 6| 7}
IA-32 compiler

- 1 pp5 optimizes for the Intel
Pentium processor.

- 1 pp6 optimizes for the Intel
Pentium Pro, Pentium I1, and
Pentium III processors.

-1 pp7 optimizes for the Intel
Pentium 4 and Xeon(TM)
processor; requires the and support
of Streaming SIMD Extensions 2.

More. .

-t pp6

Sets | MPLI CI' T NONE by
default.

More. .

ON

- Unane

Removes a defined macro specified
by name; equivalent to an
#undef preprocessing directive.

hore. .. |

OFF

-unrol I [n]

-Use N to set maximum number of
times to unroll a loop.

-Omit N to let the compiler decide
whether to perform unrolling or not.
-Use n = 0 to disable unroller.

The Itanium compiler currently uses
only n = 0; all other values are
NOPs.

More. .

ON

- upper case

Changes routine names to all
uppercase characters.

More. .

OFF

- us

Appends (default) an underscore to
external subroutine names.

More. .

ON

-use_asm

Produces objects through the
assembler.

More. .

OFF

-use_nsasm

IA-32 compiler

Supports Microsoft* style assembly
language insertion using MASM
style syntax, and if requested,
outputs assembly in MASM format.

More. .

OFF

-Vstring

Displays compiler version
information.

OFF

36

More. .

Shows driver tool commands and
executes tools.

More. .

OFF

-Vaxlib

Enables linking to portability library
(I i bPEPCF90. a) in the
compilation.

More. .

OFF

-Vvec-
IA-32 compiler

Turn off the vectorizer.
More. .

OFF

-vec _report
{0l 1] 2| 3] 4] 5}

IA-32 compiler

Controls amount of vectorizer
diagnostic information as follows:
N = 0: no information

N = 1: indicate vectorized /non-
vectorizerd integer loops

N = 2: indicate vectorized /non-
vectorized integer loops

N = 3: indicate vectorized /non-
vectorized integer loops and
prohibit data dependence
information

N = 4: indicate non-vectorized
loops

N = 5: indicate non-vectorized
loops and prohibit data dependence
information

hore. .. |

-vec _reportl

-VIs

Enables support for extensions to
Fortran that were introduced by
Digital VMS and Compagq Fortran
compilers.

More. .

OFF

Suppresses all warning messages.
Ifore. ..

OFF

Suppresses or displays all warning
messages.

N=0: suppresses all warnings
N=1: displays all warnings
(default).

hore. .. |

Issues a warning about out-of-
bounds array references at compile
time.

hore. .. |

OFF

-Wp_i po

A whole program assertion flag for
multifile optimization with the
assumption that all user variables
and user functions seen in the
compiled sources are referenced

OFF

37

only within those sources. The user
must guarantee that this
assumption is safe.

hore. .. |

-x{i MKW

IA-32 compiler

Generates processor-specific code
corresponding to one of codes: i ,
M K, and Wwhile also generating
generic I1A-32 code. This differs
from - ax{ n} in that this targets a
specific processor. With this option,
the resulting program may not run
on processors older than the target
specified.

More. .

OFF

Removes standard directories from
the include file search.

More. .

OFF

Enables syntax check only.
Ifore. ..

OFF

-zZero

Implicitly initializes to zero all data
that is uninitialized. Used in
conjunction with - save.

hore. .. |

OFF

-Zp{ 1| 2| 4| 8| 16}

Specifies alignment constraint for
structures on 1-, 2-, 4-, 8- or 16-
byte boundary.

hore. .. |

IA-32:
- Zp4
Itanium Compiler: - Zp8

38

Functional Group Listings

Compiler Options by Functional
Groups Overview

Options entered on the command line change the compiler’s default behavior, enable or disable

compiler functionalities, and can improve the performance of your application. This section

presents tables of compiler options groupped by Intel® Fortran Compiler functionality within these

categories:

= Customizing Compilation Process Option Groups
= Language Conformance Option Groups
= Application Performance Optimizations

Key to the Tables

In each table:

= The functions are listed in alphabetical order
= The default status ON or default value is indicated; if not mentioned, the default is OFF

= The IA-32 or Itanium(TM) architectures are indicated as follows:
- not mentioned = used by both architectures

- indicated in a row = used in the following rows exclusively by indicated architecture.
Each option group is described in detailed form in the sections of this documentation. Some
options can be viewed as belonging to more than one group; for example, option - C that tells
compiler to stop at creating an object file, can be viewed as monitoring either compilation or

linking. In such cases, the options are mentioned in more than one group.

Customizing Compilation Process Options

Fortran Compilation Environment

See Customizing Compilation Environment section for more information

Option

Description

Default

- bd, pr ognane

Invokes the binder to generate the list of objects
required to construct a complete program, given the
name of the main program unit within the file. The
list is passed to the linker, | d(1) .

OFF

-cl,file

Specifies a program unit catalog list to be searched
for modules referenced in the program in USE
statements.

OFF

Indicates an independent compilation, that is, the
FCE of the Intel Fortran Compiler is not accessed
or updated. A MODULE or USE statement in the
source will cause the compiler to generate an error.

OFF

-Qnstalldir

Sets root directory of compiler installation, indicated
indi r to contain all compiler install files and
subdirectories.

OFF

39

Alternate Tools and Locations

Option Description Default
) . Enables you to specify a pat h as the OFF
t (()Jolocgglt ﬁn’ location of the specified tool (such as the

assembler, linker, preprocessor, and
compiler). See Specifying Alternate Tools
and Locations.

Qopti on, tool, opts

t ool , where opt s is a comma-separated
list of options. See Passing Options to Other
Tools.

Passes the options specified by Opt S toa |OFF

Preprocessing

See the Preprocessing section for more information.

search path.

Option Description Default
CA-] Removes all predefined macros. _A
- cpp{ n} Sameas -fpp{n}. OFF
- Dnare Defines the macro name and associates it with the |OFF
[={#| t ext}] specified value. The default (- Dnane) defines a
B macro with val ue =1.
“E Directs the preprocessor to expand your source OFF
module and write the result to standard output.
_EP Same as -E but does not include #line directivesin |OFF
the output.
E Preprocesses to an indicated file. Directs the OFF
preprocessor to expand your source module and
store the result in a file in the current directory.
_fpp{n} Uses the fpp preprocessor on Fortran source files. |OFF
pp N=0: disable CVF and #directives
N=1: enable CVF conditional compilation and #
directives (default)
N=2: enable only #directives,
N=3: enable only CVF conditional compilation
directives.
Sidir Adds directory di r to the include file search path. |OFF
p Directs the preprocessor to expand your source OFF
module and store the result in a file in the current
directory.
_ Uname Eliminates any definition name currently in effect. OFF
X Removes standard directories from the include file |OFF

40

Compiling

See detailed Compiling section.

Option Description Default
-0f check Avoid incorrect decoding of some Of instructions; enable the patch |OFF
IA-32 only for the Pentium® Of erratum.
) . Analyzes and reorders memory layout for variables and arrays.) .
align (Same as - Zp{n}.) align
-noal i gn Disables - al i gn. OFF
_c Compile to object only (. 0), do not link. OFF
_falias Enables aliasing in program. ON
_fno-alias Disables aliasing in program. OFF
_ffnalias Enables aliasing across functions. ON
_fno-fnalias Disables aliasing across functions, but enables aliasing across calls. |OFF
_f Disables using ebp as general purpose register in optimizations. OFF
P Directs to use the ebp-based stack frame for all functions.
-ftz Flushes denormal results (floating-point values smaller than smallest|OFF
Itanium(TM)-based normalized floating-point number) to zero. Use this option when the
systems denormal values are not critical to application behavior.
~Kpic, -KPIC Generate position-independent code. OFF
“nobss_init Disable placement of zero-initialized variables in BSS (using Data). |OFF
p, -qp Compile and link for function profiling with UNIX prof tool. OFF
S Produce assembly file named f i | €. asmwith optional code or OFF
source annotations. Do not link.
-sox[-] igagiiéﬂf;zr:.) or disable saving of compiler options and version in|_ SOX
| A-32 only
_Tifile Compile f i | e as Fortran source. OFF
_use_asm Produces objects through the assembler. OFF
-use_nsasm Support Microsoft style assembly language insertion using MASM |OFF
IA-32 only format style and syntax and if requested, output assembly in
MASM format.
- Zp{n} Specifies alignment constraint for structures on N-byte boundary |[IA-32:
P (n=1,2,4,8,16). The - Zp16 option enables you to align -Zp4
Fortran structures such as common blocks. Default: A-32: - Zp4, |Itanium
Itanium Compiler: - Zp8. Compiler:
-Zp8

41

Linking

See detailed Linking section.

Option Description Default
) . Dynamically links libraries at run time. Compared |OFF
Bdynami c to static linking, results in smaller executables.
_c Compile to object only (. 0), do not link. OFF
- 90 Link with alternate 1/O library for mixed output with|OFF
the C language.
. . Enables to link Intel-provided libraries OFF
-1 _dynami ¢ dynamically.
Ldir Instructs linker to search di r for libraries. OFF
_| narme Link with a library indicated in name. For example,|OFF
- | mindicates to link with the math library.
)) Compile and link for function profiling with UNIX |OFF
P ap prof tool.
_posixlib Enable linking with POSIX library. OFF
_shar ed Instructs the compiler to build a Dynamic Shared |OFF
Object (DSO) instead of an executable.
_static Enables to link shared libraries (. SO) statically. |OFF
“Vaxlib Enable linking with portability library. OFF

Compilation Output

See the Specifying Compilation Output section for more information.

Option Description Default
. Produce the executable file name specified inf i | e; for |OFF
-ofile ;
example, - onyfi | e.
Combined with - S, indicates assembly file or directory for
multiple assembly files.
Combined with - C, indicates object file name or directory
for multiple object files.
_c Compile to object only (. 0), do not link. OFF
_fcode-asm Produces assembly file with optional code byte information.|OFF
)) Produces assembly file with optional high-level source OFF
fsource-asm code information.
)) Produces assembly file with compiler comments including |OFF
fverbose-asm compiler version and options used.
_fnover bose- asm Produces assembly file without compiler comments. OFF

42

S Produce assembly file named f i | €. asmwith optional |OFF
code or source annotations. Do not link.
es Writes a listing of the source file to standard output, OFF
including any error or warning messages. The errors and
warnings are also output to standard error, St derr .
_al Prints a listing of the source file to the standard output OFF
without | NCL UDE files expanded.
Debugging
See the Debugging section for more information.
Option Description Default
- DD Compiles debug statements indicated by a Dorad |OFF
in column 1; if this option is not set these lines are
treated as comments
Compiles debug statements indicated by a X (not an |OFF
- DX : NP o .
X) in column 1; if this option is not set these lines are
treated as comments.
Compiles debug statements indicated by a Y (not a |OFF
- DY : NP o .
Y) in column 1; if this option is not set these lines are
treated as comments.
o . Keeps the source position of inline code instead of |OFF
i Inplol ne_debug_ assigning the call-site source position to inlined code.
g Produces symbolic debug information in the object |OFF
file.
_y, -syntax Both perform syntax check only. OFF
Libraries
See detailed section on Libraries.
Option Description Default
- 090 Link with alternate 1/O library for mixed output with |OFF
the C language.
i _dynamic Enables to link Intel-provided libraries dynamically. |OFF
Ldir Instructs linker to search di r for libraries. OFF
_| name Links with the library indicated in narme. OFF
_posixlib Link with POSIX library. OFF
_shar ed Instructs the compiler to build a Dynamic Shared |OFF
Object (DSO) instead of an executable.
_static Enables to link shared libraries (. S0O) statically. OFF
“Vaxlib Link with portability library. OFF

43

Diagnostics and Messages

See Diagnostics and Messages section for more information.
Runtime Diagnostics (IA-32 Compiler only)

Option Description Default
e Equivalent to: (- CA, - CB, - CS, - CU, - CV) OFF
extensive runtime diagnostics options.
_CA Use in conjunction with - d{ n} . Checks for ni | OFF
pointers/allocatable array references at runtime.
- CB Use in conjunction with - d{ n} . Generates runtime |OFF
code to check that array subscript and substring
references are within declared bounds.
- CS Use in conjunction with - d{ n} . Generates runtime |OFF
code that checks for consistent shape of intrinsic
procedure.
_cu Use in conjunction with - d{ n} . Generates runtime |OFF
code that causes a runtime error if variables are used
without being initialized.
.oV Use in conjunction with - d{ n} . On entry to a OFF
subprogram, tests the correspondence between the
actual arguments passed and the dummy arguments
expected. Both calling and called code must be
compiled with - CV for the checks to be effective.
_d{n} Set the level of diagnostic messages. OFF
Compiler Information Messages
Option Description Default
- nol odo Disables the display of the compiler version (or OFF
g sign-on) message: compiler ID, version, copyright
years.
_hel You can print a list and brief description of the OFF
P most useful compiler driver options by specifying
the - hel p option on the command line.
_Vstring Displays compiler version information. OFF
v Shows driver tool commands and executes tools. |OFF
Shows driver tool commands, but does not OFF
-dryrun execute tools.
Comment and Warning Messages
Option Description Default
_em Suppresses all comment messages. OFF
Enables/disables (default) a terse format for
cerrsf-] diagnostic messages, for example: " fi | ", Cerrs
line no : error nessage

44

Suppresses all warning messages.

OFF

-W
W n} Suppresses or displays all warning messages “wi
generated by preprocessing and compilation.
N=0: suppresses all warnings
N=1: displays all warnings (default).
VB On a bound check violation, issues a warning OFF
instead of an error (accommodates old FORTRAN
code, in which array bounds of dummy arguments
were frequently declared as 1.)
Error Messages
Option Description Default
_q Suppresses compiler output to standard error, OFF

_stderr.When - q is specified with - bd, then
only fatal error messages are output to
_stderr.

45

Language Conformance Options

Data Type

See more details in

Setting Data Types and Sizes.

Option

Description

Default

- aut odoubl e

Sets the default size of real numbers to 8 bytes; same as - I 8.

OFF

-i{2] 4] 8}

Specifies that all quantities of i Nt eger type and unspecified)

Ki nd occupy two bytes. All quantities of | 0gi cal type and
unspecified ki nd will also occupy two bytes. All logical
constants and all small integer constants occupy two bytes.

-1 4:Alli nt eger and| ogi cal types of unspecified kind
will occupy four bytes.

-1 8: Alli nt eger and| ogi cal types of unspecified kind
will occupy eight bytes.

-r{4] 8| 16}

Defines the KI ND for real variables in 4 (default), 8, and 16
bytes.

- 1 8: change the size and precision of default REAL entities to
DOUBLE PRECI SI ON. Same as the - aut odoubl e.

- 1 16: change the size and precision of default REAL entities
to REAL (KI ND=16).

-r4

Source Program

See more details in Source Program Features.

Option Description Default
1 Same as - onet ri p. OFF
-132 Enables fixed form source lines to contain up to 132 OFF
characters.
) ST Enables (default) or disables assumption of the program’s | .
ansi [-] ANSI conformance. ansi
Provides cross-platform compatibility .
)) Enables (default) or disables DEC* parameter statement |
dps nodps recognition. dps
extend _Eria?)blzes extended (132-character) source lines. Same as |OFF
source '
= Specifies that all the source code is in fixed format; this is |[OFF
the default except for files ending with the suffix .f, .ftn,
for.
"ER Specifies that all the source code is in Fortran free format;|OFF
this is the default for files ending with the suffix . f 90.
Controls the case of routine names and external linker
-1 ower case symbols to all lowercase characters. -1 ower case

46

- nbs

Treats backslash (\) as a normal graphic character, not
an escape character. This may be necessary when
transferring programs from non-UNIX environments, for
example from VAX-VMS. For the effects of the escape
character, see the Escape Characters.

OFF

-nus[file]

Do not append an underscore to subroutine names listed
inf i | e. Useful when linking with C routines.

OFF

-onetrip

Compiles DOloops at least once if reached (by default,
Fortran 95 DOloops are not performed at all if the upper
limit is smaller than the lower limit). Same as - 1.

OFF

- pad_source

Enforces the acknowledgment of blanks at the end of a
line.

OFF

- upper case

Maps routine names to all uppercase characters.

ENote

Do not use this option in combination with - Vax! i b or
- posi xl i b.

OFF

-VIs

Enables support for extensions to Fortran that were
introduced by Digital VMS Fortran compilers. The
extensions are as follows:
= The compiler enables shortened, apostrophe-
separated syntax for parameters in I-O statements.
= The compiler assumes that the value specified for
RECL in an OPEN statement is given in words rather
than bytes. This option also implies - dps (on by

default).

OFF

Arguments and Variables

See more deatils in Setting Arguments and Variables.

Option Description Default
) . Analyze and reorder memory layout for) .
align variables and arrays. align
-noal i gn Disables - al i gn. OFF
_auto Makes all local variables AUTOVATI C. OFF

Causes all variables to be allocated on the
stack, rather than in local static storage.

-aut o_scal ar

Causes scalar variables of rank 0, except for OFF
variables of the COVPLEX or CHARACTER
types, to be allocated on the stack, rather than
in local static storage.

Enables the compiler to make better choices
concerning variables that should be kept in
registers during program execution. On by
default.

-common_ar gs

Assumes "by reference" subprogram arguments |OFF
may have aliases of one another.

47

-inplicitnone

Enables the default | MPLI CI T NONE.

OFF

-save

Forces the allocation of all variables in static

storage. If a routine is invoked more than once,

this option forces the local variables to retain

their values from the first invocation terminated.

Opposite of -auto.

OFF

-u

Enables the default | MPLI CI T NONE. Same|OFF

as-i nplicitnone,.

-zZero

Initializes all data to zero. It is most commonly |OFF

used in conjunction with - save.

Common Blocks

See Allocating Common Blocks for more information.

Option Description Default
) Dynamically allocates COVMON blocks |OFF
" Sfjﬂcgpkz w |at run time.
Enables local allocation of given OFF
" g Eicglmkz « |COVMON blocks at run time.

48

Application Performance
Optimizations Options

Setting Optimization Level

See the Optimization Levels section for more information.

Option

Description

Default

- Ol

1A-32 compiler: Optimizes to favor code size. Disables
option - f p. Disables intrinsics inlining to reduce
code size.

Itanium(TM) compiler: Turns off software pipelining to
reduce code size. Optimizes to favor code size.
Enables the same optimizations as - O2 except for

loop unrolling. Generally, - O2 is recommended over
- QL.

OFF

Optimize for speed, but disable some optimizations

that increase code size for a small speed benefit. - O2|”

disables option - f p.

Enables - O2 option with more aggressive
optimization and sets high-level optimizations,
including loop transformation, OpenMP, and
prefetching. High-level optimizations use the
properties of source code constructs such as loops
and arrays in applications written in high-level
programming languages.

Optimizes for maximum speed, but may not improve
performance for some programs.

OFF

-0

Disables optimizations - O1, - O2 and - O3. Enables
option - f p.

OFF

Floating-point Arithmetic Precision

See Floating-point Arithmetic Optimizations for more information.

Option Description Default
-fp_port Rounds floating-point results at assignments |OFF
IA-32 only and casts. Some speed impact.
-1 FP_fma[-] Enables/disables the contraction of floating- | | £ ¢ o
[tanium(TM) compiler point multiply and add/subtract operations -

into a single operation.
-1 PF_fp_specul ati on |[Sets the compiler to speculate on fp -1 PF_fpc64_

node

Itanium compiler f ast : speculate on fp operations;

when it is safe;
stri ct: enables the compiler's

preserving floating-point status in all

operations in one of the following modes:

saf e: speculate on fp operations only

speculation on floating-point operations

situations; same as current version Of f .

specul ati on
f ast

49

of f : disables fp speculation.

-IPF_flIt _eval _
net hodO

Itanium compiler

-1 PF_flIt _eval et hodO directs
the compiler to evaluate the expressions
involving floating-point operands in the
precision indicated by the program.
(-1PF_flt _eval nethod2isnot
supported in the current version.)

OFF

-l FP_fltacc|-]

Itanium compiler

Enables/disables the compiler to apply
optimizations that affect floating-point
accuracy. By default, the compiler may apply
optimizations that affect floating-point
accuracy.

-1 PF_f |t acc- disables such
optimizations.

- | PF_f | t acc- is effective when - np is
on.

-lFP_fltacc

Maintains declared precision and ensures

OFF

-p that floating-point arithmetic conforms more
closely to the ANSI and IEEE 754 standards.
See details in the Maintaining and
Restricting FP Arithmetic Precision.

“mpl Restricts floating-point precision to be closer |OFF

to declared precision. Some speed impact,
but less than - NP. See details in the
Maintaining and Restricting FP Arithmetic
Precision.

- pc{32] 64| 80}

Enables floating-point significand precision

IA-32 compiler control as follows: - pcé4
- pc 32 to 24-bit significand
- pc 64 to 53-bit significand (Default)
- pc 80 to 64-bit significand
-prec_div Imroves the floating point division-to- OFF
IA-32 compiler multiplication optimization; may impact
speed.
-rcd Enables efficient float-to-integer conversion. |OFF
IA-32 compiler
Processor Dispatch Support (IA-32 only)
See Processor Dispatch Extensions Support for more information.
Option Description Default
-t pp5 Optimizes for the Intel Pentium® processor. OFF
IA-32 compiler Enables best performance for Pentium® processor
-t pp6 Optimizes for the Intel Pentium Pro, Pentium I, and Pentium | t bO6
IA-32 compiler Il processors. Pp
Enables best performance for the above processors.
-t pp7 Optimizes for the Pentium 4 and Xeon(TM) processors. OFF
IA-32 compiler Requires the Red Hat version 7.1 and support of Streaming
SIMD Extensions 2.
Enables best performance for Pentium 4 processor
-ax{i | M K| W |Generates, on a single binary, code specialized to the OFF

50

IA-32 compiler

extensions specified by the codes:

I Pentium Pro, Pentium Il processors

M Pentium with MMX technology processor

K Pentium Il processor (Streaming SIMD Extensions)

W Pentium 4 and Xeon processors

In addition, - aX generates |IA-32 generic code. The generic
code is usually slower.

-x{i |M KW

IA-32 only

Generate specialized code to run exclusively on the OFF

processors supporting the extensions indicated by the codes:
I Pentium Pro, Pentium Il processors

M Pentium with MMX technology processor

K Pentium Il processor

W Pentium 4 and Xeon processors

Interprocedural Optimizations

See Interprocedural Optimizations (IPO) section for more information.

Option Description Default
_i Enables single-file interprocedural optimizations. OFF
P Enhances inline function expansion.
_i no inlinin Disables full or partial inlining that would result from |OFF
p_ho_ 9 th.e -ip interprocedural optimizations. Requires - 1 P or
-1 pPOo.
-1 p_no_pinlining |Disables partial inlining. Requires - i p or - i poO. OFF
IA-32 compiler
_ipo Enables interprocedural optimization across files. OFF
P Compile all objects over entire program with multifile
interprocedural optimizations.
Enhances multifile optimization; multifile inline function
expansion, interprocedural constant and function
characteristics propagation, monitoring module-level
static variables; dead code elimination.
_ipo ¢ Optimizes across files and produces a multifile object |OFF
PO_ filg. This option performs the same optimizations as
- 1 PO, but stops prior to the final link stage, leaving an
optimized object file.
. bi Forces the generation of real object files. Requires OFF
-1 po_obj _i po.
_ipo S Optimizes across files and produces a multifile OFF
PO_ assembly file. This option performs the same
optimizations as - | PO, but stops prior to the final link
stage, leaving an optimized assembly file.
_inline debu Preserve the source position of inlined code instead of |[OFF
info — 9_ assigning the call-site source position to inlined code.
“nolib_inline Disables inline expansion of intrinsic functions. OFF
A whole program assertion flag for IPO enabling OFF

-Wp_i po

assumption that all user variables and functions are
referenced only within user sources. The user must
guarantee that this assumption is safe.

51

Profile-guided Optimizations

See detailed Profile-guided Optimizations section.

Option

Description Default

-prof _dirdir

Specifies the directory to hold profile information in|OFF

the profiling output files, * . dyn and * . dpi .

-prof _filefile

Specifies file name for profiling summary file. OFF

- prof _gen

Instruments the program for profiling: to get the |OFF

execution count of each basic block.

- prof _use

Enables the use of profiling dynamic feedback OFF

information during optimization. Profiles the most
frequently executed areas and increases
effectiveness of IPO.

High-level Language Optimizations

See detailed High-level Language Optimizations (HLO) section.

Option Description Default
-1 vdep_par al | el |Iindicates there is absolutely no loop-carried OFF
Itanium compiler memory dependency in the loop where IVDEP
directive is specified.
-prefetch[-] Enables or disables prefetch insertion (requires
. e ; -prefetch
IA-32 compiler - (B). Reduces the wait time; optimum use is
determined empirically.
-scal ar_rep[-] Enables (default) or disables scalar replacement | scal ar
IA-32 compiler performed during loop transformations (requires -
- B). Eliminates all loads and stores of that rep
variable. Increases register pressure.
N: set maximum number of times to unroll a loop
unrol 1 n] N omitted: compiler decides whether to perform unrol |
unrolling or not.
N = 0: disables unroller.
Eliminates some code; hides latencies; can
increase code size.
For Itanium-based applications, - unr ol | [0]
is used only for compatibility.
Parallelization
See detailed Parallelization section.
Option Description Default
_paral | el Enables the auto-parallelizer to generate OFF

multithreaded code for loops that can be
safely executed in parallel.

- par _t hreshol d{ n}

Sets a threshold for the auto-parallelization of
loops based on the probability of profitable
execution of the loop in parallel, N=0 to 100.

n=75.

52

Controls the auto-parallelizer’'s diagnostic

- par _report levels: -par_reportl
0] 1] 2| 3} . i
{ 0 - no information
1 - successfully auto-parallelized loops
2 - successfully and unsccessfully auto-
parallelized loops
3 - same as 2 plus additional information
about any proven or assumed dependences
inhibiting auto-parallelization.
_opennp Enables the parallelizer to generate multi- OFF
threaded code based on the OpenMP
directives.
Enables parallel execution on both uni- and
multiprocessor systems. Requires - f pp.
Controls the OpenMP parallelizer's diagnostic
levels: - opennp_
0 - no information reportl

opennp_report{0] 1]
2}

1 - loops, regions, and sections parallelized
(default)

2 - same as 1 plus master construct, single
construct, etc.

Vectorization (IA-32 only)

See deatiled Vectorization section.

Option

Description Default

-ax{i | M KW

IA-32 compiler

Generates, on a single binary, code specialized to |OFF

the extensions specified by the codes:

I Pentium Pro, Pentium Il processors

M Pentium with MMX technology processor

K Pentium Il processor

W Pentium 4 and Xeon(TM) processors

In addition, - aX generates |IA-32 generic code.
The generic code is usually slower.

f) Note: - axi is not a vectorizer option.

-x{i | MKW

IA-32 compiler

Generate specialized code to run exclusively on the|OFF

processors supporting the extensions indicated by
the codes:

I Pentium Pro, Pentium Il processors

M Pentium with MMX technology processor

K Pentium Il processor

W Pentium 4 and Xeon processors

f) Note: - xi is not a vectorizer option.

-vec_report
{0l 1] 2] 3| 4| 5}
IA-32 compiler

Controls the diagnostic messages from the
vectorizer with N indicating as follows:

N = 0: no information

N = 1: vectorized /non-vectorizerd integer loops

N = 2: vectorized /non-vectorized integer loops

N = 3: vectorized /non-vectorized integer loops and
prohibit data dependence information

-vec_reportl

53

N = 4: non-vectorized loops
N = 5: non-vectorized loops and prohibit data
dependence information

-VecC-
IA-32 compiler

Turns off the vectorizer.

OFF

Optimization Reports (Itanium(TM) Compiler)

See detailed Optimizer Report Generation.
These options are implemented with Itanium(TM) compiler only.

Option Description Default
-opt _report Generates optimizations report and OFF
Itanium compiler directs to stderr unless

-opt _report _fil eis specified.
-opt _report filefilenane |Specifiesthefi | enane toholdthe |OFF

Itanium compiler

optimizations report.

-opt _report | eve
{m n| med| max}

Specifies the detail level of the
optimizations report.

-opt _report

. . _levelmn
Itanium compiler
-opt _report phasephase Specifies the optimization to generate the| OFF
Itanium compiler report for. Can be specified multiple times
on the command line for multiple
optimizations.
-opt _report _help Prints to the screen all available phases |OFF
Itanium compiler for- opt _report _phase.
-opt _report _routine Generates reports from all routines with |OFF

routine_substring
Itanium compiler

names containing the subst ri ng as
part of their name. If not specified, reports

from all routines are generated.

54

Windows* to Linux* Mapping

Windows* to Linux* Options Cross-reference

This section provides cross-reference table of the Intel® Fortran Compiler options used on the
Widows* and Linux* operating systems. The options described can be used for compilations
targeted to either IA-32- or Itanium-based applications or both. See Conventions Used in the
Options Quick Guide Tables.

= Options specific to 1A-32 architecture
= Options specific to the Itanium(TM) architecture

= Options available for both I1A-32 and Itanium architecture

f)Note

The table is based on the alphabetical order of compiler options for Linux.

f)Note

The value in the Default column is used for both Windows and Linux operating systems
unless indicated otherwise.

Windows Option

Linux Option

Description

Default

/QOf[-]
IA-32 only

- OF_check
IA-32 only

Enables a software
patch for Pentium
processor Of erratum.

OFF

/1

-1

Executes any DOloop
at least once.

OFF

/ 4L{ 72| 80| 132}

72, -80, -132

Specifies 72, 80 or 132
column lines for fixed
form source only. The
compiler might issue a
warning for non-
numeric text beyond 72
for the

- 72 option.

Windows:
[4L72
Linux:
-72

/u

Removes all predefined
macros. Issues a
warning if OpenMP
does not work correctly.

OFF

/align

-align

Analyzes and reorders
memory layout for
variables and arrays.
(Same as - Zp{ n}.)

ON

/align-

-noal i gn

Disables .-align

OFF

/ Qansi [-]
IA-32 only

-ansi [-]

Enables (default) or
disables assumption of
the programs ANSI
conformance.

ON

1 4{Y| N} a

-auto

Causes all variables to
be allocated on the
stack, rather than in
local static storage.

Windows:
| 4Na
Linux:
OFF

55

Does not affect
variables that appear in
an EQUI VALENCE or
SAVE statement, or
those that are in
COVIVON. Makes all
local variables
AUTQOVATI C.

/ Qaut odoubl e

- aut odoubl e

Sets the default size of
real numbers to 8
bytes; same as - I 8.

OFF

/ Qaut o_scal ar

-aut o_scal ar

- Bdynam ¢

Makes scalar local
variables
AUTQOVATI C.

ON

Generates code that is
optimized for a specific
processor, but that will
execute on any 1A-32
processor. Compiler
generates multiple
versions of some
routines, and chooses
the best version for the
host processor at
runtime. supporting the
extensions indicated by
processor-specific
codes | (Pentium®
Pro), M(Pentium with
MMX(TM) technology),
K (Pentium 11I), and W
(Pentium 4 and
Xeon(TM)).

OFF

Dynamically links
libraries at run time.
Compared to static
linking, results in
smaller executables.

OFF

/ Qobd, prognane

- bd, nane

Enables the Intel®
Fortran Compiler binder
to generate a list of
objects to build a
PROGNAME.

OFF

Stops the compilation
process after an object
file (. O) has been
generated.

OFF

Enable extensive
runtime error checking.
Equivalent to: - CA,
-CB,-CS,-CY, or-
CV runtime diagnostics
options.

OFF

56

~

C90

- C90

Generates code check
at runtime to ensure
that referenced
pointers and
allocatable arrays are
not nil. Should be used
in conjunction with

-d{n}.

OFF

Generates code to
check that array
subscript and substring
references are within
declared bounds.
Should be used in
conjunction with

-d{n}.

OFF

Generates code to
check the shapes of
array arguments to
intrinsic procedures.
Should be used in
conjunction with

-d{n}.

OFF

Generates code that
causes a runtime error
if variables are used
without being
initialized. Should be
used in conjunction
with - d{ n}.

OFF

Onentry to a
subprogram, tests the
correspondence
between the actual
arguments passed and
the dummy arguments
expected. Both calling
and called code must
be compiled with - CV
for the checks to be
effective. Should be
used in conjunction
with - d{ n}.

OFF

Links with an
alternative 1/O library
(' i bCEPCF90. a)
that supports mixed
input and output with C
on the standard
streams.

OFF

-cerrs[-]

Enables/disables errors
and warning messages
to be printed in a terse

format.

Windows: ON
Linux: OFF

57

Il file

-cl,file

Specifies a program
unit catalog list file in
which to search for
referenced modules.

OFF

/cm

-cm

Suppresses all
comment messages.

OFF

/ Qconmon_ar gs

-common_args

Assumes by reference
subprogram arguments
may have aliases of
one another.

OFF

I Qcpp[n]

-cpp[n]

Same as - f pp.

OFF

/ Qd_lines

- DD

Compiles debugging
statements indicated by
the letter Din column 1
of the source code.

OFF

/ Qdx_|ines

- DX

Compiles debugging
statements indicated by
the letters X in column
1 of the source code.

OFF

/ Qdy_lines

- DY

Compiles debugging
statements indicated by
the letters Y in column
1 of the source code.

OFF

/ d{n}
IA-32 only

- d{ n}
IA-32 only

Sets diagnostics level
as follows:
- dO - displays
prochame line
- d1 - displays local
scalar variables
- d2 - local and
common scalars

- d>2 - display first n
elements of local and
COVIVON arrays, and
all scalars.

OFF

/ Dnane[=
{#| text}]

- Dnane| =
{#| text}]

Defines a macro name
and associates it with
the specified value.

OFF

/ Qdoubl et enps

- doubl et enps

Ensures that all
intermediate results of
floating-point
expressions are
maintained in at least
double precision.

OFF

/ Qdps| -]

-dps, -nodps

Enable (default) or
disable DEC*
parameter statement
recognition.

Windows: ON
Linux: - dps

None

-dryrun

Show driver tool
commands but do not
execute tools.

OFF

58

I E

Preprocesses the
source files and writes
the results to

_st dout . If the file
name ends with capital
F, the option is treated

asf pp.

OFF

[4{Y| N} s

None

Enables/disables
issuing of errors rather
than warnings for
features that are non-
standard Fortran.

OFF

| EP

-EP

Preprocesses the
source files and writes
the results to stdout
omitting the #l i ne
directives.

OFF

/ Qextend
source

-extend_
source

Enables extended
(132-character) source
lines. Same as - 132.

OFF

/P

-F

Preprocesses the
source files and writes
the results to file.

OFF

None

-falias

Enables aliasing in
program.

ON

None

-fno-alias

Disables aliasing in
program.

OFF

None

-ffnalias

Enables aliasing across
functions.

ON

None

-fno-fnalias

Disables aliasing
across functions, but
enables aliasing across
calls.

OFF

| FAC

-fcode-asm

Produces assembly file
with optional code byte
annotations.

OFF

| FAs

-fsource-asm

Produces assembly file
with optional high-level
source code
annotations.

OFF

None

-fverbose-asm

Produces assembly file
with compiler
comments including
compiler version and
options.

ON

None

-f nover bose-
asm

Produces assembly file
without compiler
comments.

OFF

/ FI

-FI

Specifies that the
source code is in fixed
format. This is the
default for source files

OFF

59

with the file extensions
for,.f,or.ftn.

/ Oy-
IA-32 only

- f p
IA-32 only

Disables the use of the
ebp register in
optimizations. Directs
to use the ebp-based
stack frame for all
functions.

OFF

| X p_port

-fp_port
IA-32 only

Rounds floating-point
results at assignments
and casts. Some speed
impact.

OFF

I & pp{n}

- f pp{ n}

Runs the Fortran
preprocessor (f pp) on
all Fortran source files
(f,.ftn,.for,
and . f 90 files) prior
to compilation.

N=0 disable CVF and
directives, equivalent
tono f pp.

N=1 enable CVF
conditional compilation
and # directives
(default)

N=2 enable only #
directives

N=3 enable only CVF
conditional directives

n=1

I FR

-FR

Specifies that the
source code is in
Fortran 95 free format.
This is the default for
source files with the

. T 90 file extensions.

OFF

[tz

Itanium compiler

-ftz
Itanium compiler

Flushes denormal
results to zero.

OFF

1Zl,1Z7

-9

Generates symbolic
debugging information
and line numbers in the
object code for use by
source-level
debuggers.

OFF

/ Q0

Prints source listing to
stdout (typically your
terminal screen) with
the contents of

expanded | NCLUDE
files.

OFF

/ Gl

Prints a source listing
to stdout, without
contents of expanded

OFF

60

I NCLUDE files.

/ hel p

-hel p

Prints help message.

OFF

/41 {2] 4| 8}

-i{2] 4] 8}

Defines the default

Kl ND for integer
variables and constants
in 2, 4, and 8 bytes.

Windows: / 41 4
Linux: -1 4

lic

Runs independent
Fortran compilation
without accessing and
updating Fortran
compilation
environment (FCE).

OFF

None

-i _dynam c

Enables to link Intel-
provided libraries
dynamically.

OFF

[1dir

-ldir

Specifies an additional
directory to search for
include files whose
names do not begin
with a slash (/).

OFF

[4{Y| N} d

-inplicitnone

Enables/disables the
| MPLI CI' T NONE.

OFF

/ Q nline_debug
_info

-inline_debug
i nfo

Keep the source
position of inline code
instead of assigning the
call-site source position
to inlined code.

OFF

. . Enables single-file OFF

/Qp -1p interprocedural
optimizations within a
file.

. . Disables full or partial |ON
/QI p_no_ - lp.—n.o— inlining that would
Intining Intining result from the -ip

interprocedural
optimizations. Requires
-ipor-ipo.

: -ip_no_ Disables partial inlining.|OFF
/iinpi_zioﬁ pi nlining Requires - i p or
P 9 IA-32 only -i po.

IA-32 only
[QPF_fma[-] -1 PF_fma[-] Enables/disables the |ON

Itanium compiler

Itanium compiler

contraction of floating-

point multiply and add/
subtract operations into
a single operation.

[QPF fp_
specul ati on
node

Itanium compiler

-1 PF _fp_
specul ati on
node

Itanium compiler

Sets the compiler to
speculate on fp
operations in one of the
following modes:

f ast : speculate on fp

I QPF_fp_
specul ati on
f ast

61

operations;

saf e: speculate on fp
operations only when it
is safe;

st ri ct: enables the
compiler’s speculation
on floating-point
operations preserving
floating-point status in
all situations;

of f : disables the fp
speculation.

/QPF flt _eval
_met hodO
Itanium compiler

-IPF_flIt _eval _
met hodO
Itanium compiler

-IPF_flIt _eval _
net hodO directs the
compiler to evaluate
the expressions
involving floating-point
operands in the
precision indicated by
the program.

OFF

/ Q PF_
fltacc|-]
Itanium compiler

-1 PF_fltacc|-]
Itanium compiler

Enables/disables the
compiler to apply
optimizations that affect
floating-point accuracy.
By default, the compiler
may apply
optimizations that affect
floating-point accuracy.
-1 PF_fltacc-
disables such
optimizations.

-1 PF_fltacc- is
effective when - M is
on.

ON

/ Q po

-i po

Enables
interprocedural
optimization across
files. Compile all
objects over entire
program with multifile
interprocedural
optimizations.

OFF

/| Q po_c

-ipo_c

Optimizes across files
and produces a
multifile object file. This
option performs
optimizations as

-1 po, but stops prior
to the final link stage,
leaving an optimized
object file.

OFF

/ Q po_obj

-1 po_obj

Forces the generation
of real object files.
Requires - | pO.

IA-32: OFF
Itanium Compiler: ON

62

/ Q po_S

-ipo_S

Optimizes across files
and produces a
multifile assembly file.
This option performs
optimizations as

-1 po, but stops prior
to the final link stage,
leaving an optimized
assembly file.

OFF

/ Q vdep_
par al | el
Itanium compiler

-ivdep_
par al | el
Itanium compiler

Indicates there is
absolutely no loop-
carried memory
dependency in the loop
where | VDEP
directive is specified.

OFF

None

-Kpic, -KPIC

Generates position-
independent code.

OFF

None

-Ldir

Instructs linker to
search dir for libraries.

OFF

None

-1 nane

Links with the library
indicated in name.

/ Q ower case

- | ower case

Changes routine
names to lowercase
characters; Linux: also
the external symbol
names.

Windows: OFF
Linux: ON

[Fnfi | ename

None

Instructs the linker to
produce a map file.

OFF

' Op[-]

Maintains declared
floating-point precision
as well as conformance
to the IEEE 754
standards for floating-
point arithmetic.
Optimization is reduced
accordingly.

OFF

| Qor ec

_npl

Restricts floating
floating-point precision
to be closer to declared
precision. Some speed
impact, but less than

_np.

OFF

/ nbs

- nbs

Treats backslash (\) as
a normal graphic
character, not an
escape character.

OFF

/ Qnobss _init

-nobss _init

Disables placement of
zero-initialized
variables in BSS (using
DATA section)

OFF

/O -

-nolib_inline

Disables inline
expansion of intrinsic

ON

63

functions.

/ nol ogo

- nol ogo

Suppresses compiler
version information.

OFF

None

- NuUsS

Disables appending an
underscore to external
subroutine names.

OFF

/ us

None

Append an underscore
to external subroutine
names

OFF

/ Od

Disables optimizations.

OFF

I Q2

-0 -0L,

Optimize for speed, but
disable some
optimizations that
increase code size for
a small speed benefit.
For Itanium compiler,

- O1 turns off software
pipelining to reduce
code size.

ON

/ O3

Enables - O2 option
with more aggressive
optimization, for
example, loop
transformation.
Optimizes for maximum
speed, but may not
improve performance
for some programs.

OFF

[Fof i | ename

-ofile

Name the object file or
directory for multiple
files.

OFF

[Fafi | ename

None

Name assembly file or
directory for multiple
files.

[Fefil ename

None

Name executable file or
directory.

/| Qonetrip

-onetrip

Executes any DOloop
at least once. (Identical
to the - 1 option.).

OFF

/ Qopennp

- opennp

Enables the parallelizer
to generate
multithreaded code
based on the OpenMP
directives. This option
implies that - f pp is
ON.

OFF

I Qopennp_
report {0 1| 2}

- opennp_r eport

Controls the OpenMP
parallelizers diagnostic
levels.

Windows:

I Qopennp_
reportl
Linux:

-opennp

64

_reportl

/ Qopt _report -opt _report Generates OFF
Itanium compiler Itanium compiler optimizations report

and directs to stderr

unless

-opt _report _

fil e is specified.
/[Qopt _report__ |-opt _report _ Specifies the OFF
filefilename [filefilename [filenane tohold
Itanium compiler Itanium compiler the optimizations

report.
/ Qopt _report_ |-opt _report Prints to the screen all |OFF

hel p

litanium compiler

hel p

litanium compiler

available phases for
-opt _report _
phase.

/Qopt_report_level
{min|med|max}
Itanium compiler

-opt_report_level
{min|med|max}
Itanium compiler

Specifies the detail
level of the
optimizations report.

-opt _report _
| evel m n

[/ Qopt _report _
phasephase
Itanium compiler

-opt _report _
phasephase
Itanium compiler

Specifies the
optimization to
generate the report for.
Can be specified
multiple times on the
command line for
multiple optimizations.

OFF

/ Qopt _report
routi neroutine
_substring
Itanium compiler

-opt _report _
routi neroutine
_substring
Itanium compiler

Generates reports from
all routines with names
containing the
substri ng as part
of their name. If not
specified, reports from
all routines are
generated.

OFF

/P

Preprocesses the f pp
files and writes the
results to files named
according to the
compilers default file-
naming conventions.

OFF

[Qoad[-]

- pad

Enables/disables
changing variable and
array memory layout.

OFF

/ Qpad_source

- pad_source

Enforces the
acknowledgment of
blanks at the end of a
line.

OFF

/| Qoar al | el

-paral |l el

Enables the auto-
parallelizer to generate
multi-threaded code for
loops that can be safely
executed in parallel.

OFF

65

- par _report
{0] 1] 2| 3}

Controls the auto-
parallelizer's diagnostic
levels.

-par _reportl

-par _
t hr eshol d{ n}

Sets a threshold for the
auto-parallelization of
loops based on the
probability of profitable
execution of the loop in
parallel, N=0 to 100.
This option is used for
loops whose
computation work
volume cannot be
determined at compile-
time.

n=75

/ Qoc{ 32| 64| 80}

IA-32 only

-pc32
- pc64
- pc80

IA-32 only

Enables floating-point
significand precision
control as follows:

- pc 32 to 24-bit
significand

- pc64 to 53-bit
significand

- pc 80 to 64-bit
significand

Windows:
/Qpc64
Linux: - pc64

/ 4{ Y| N} posi x| i
b

-posi xlib

Enables/disables
(Windows) linking to
the POSIX library

(I i bPGSF90. a) in
the compilation.

Windows:
/ 4ANposi xlib
Linux: OFF

/[Qorec_div
IA-32 only

-prec_div
IA-32 only

Improve precision of
floating-point divides.
Some speed impact.

OFF

/Qprefetchl-]
IA-32 only

-prefetch[-]
IA-32 only

Enables or disables
prefetch insertion
(requires -03).

OFF

/| Qorof _dirdir

-prof _dirdir

Specifies the directory
to hold profile
information in the
profiling output files,
*.dyn and * dpi.

OFF

/ Qor of _gen

- prof _gen

Instruments the
program for profiling: to
get the execution count
of each basic block.

OFF

-prof filefile

Specifies file name for
profiling summary file.

OFF

- prof _use

Enables the use of
profiling dynamic
feedback information
during optimization.

OFF

66

/q

-q

Suppresses compiler
output to standard
error, __stderr.

OFF

/ dyncom
coml[, cong]

- dyncom
coml[, cong]

Enables dynamic
allocation of given
COMMON blocks at run

time.

OFF

None

-Qnstall,dir

Sets dir as a root
directory for compiler
installation.

OFF

/ Q ocati on,
t ool , path

-Q ocation,
tool, path

Specifies an alternate
version of a tool
located at path.

OFF

/ Q occom
coml[, con®, ...
com]

-Q occom
coml[, con®, ...
com]

Enables local allocation
of given COMMON
blocks at run time.

OFF

/ Qopti on, t ool ,
opts

- Qopti on, t ool
opts

Passes the options,
opts, to the tool
specified by tool.

OFF

None.

-qp, -p

Compile and link for
function profiling with
UNIX prof tool.

OFF

| 4R{ 4| 8| 16}

-r{4]| 8| 16}

Defines the KI ND for
real variables in 4
(default), 8, and 16
bytes.

- 1 8: change the size
and precision of default
REAL entities to
DOUBLE
PRECI SI ON. Same
as the -
aut odoubl e.

- r 16: change the
size and precision of
default REAL entities
to REAL (KI ND=16)

-r8

/ Qrcd
IA-32 only

-rcd
IA-32 only

Enables/disables fast
float-to-int conversion.

OFF

/'S

-S

Produces an assembly
output file with optional
code.

OFF

/| Qsave

-save

Saves all variables
(static allocation).
Opposite of - aut o.

ON

/ Qscal ar _
rep[-]
IA-32 only

-scal ar_rep|[-]
IA-32 only

Enables or disables
scalar replacement
performed during loop
transformations
(requires - C3).

OFF

67

| sox| -]

-sox|[-]

Enables (default) or
disables saving of
compiler options and
version in the
executable.

Itanium compiler:
accepted for
compatibility only.

IA-32: ON
Itanium compiler: OFF

None

-shar ed

Instructs the compiler
to build a Dynamic
Shared Object (DSO)
instead of an
executable.

OFF

None

-static

Enables to link shared
libraries (.so0) statically.

OFF

None

- synt ax

Enables syntax check
only. Same as-Y.

OFF

[Tifile

-Tffile

Compile file as Fortran
source.

OFF

/ & 5| 6] 7}

IA-32 only

-tpp{5| 6] 7}
IA-32 only

-tpp5 optimizes for the
Intel Pentium
processor.

- 1 pp6 optimizes for
the Intel Pentium Pro,
Pentium I1, and
Pentium Il processors.
-1 pp7 optimizes for
the Intel Pentium 4 and
Xeon processors;
requires the support of
Streaming SIMD
Extensions 2.

Windows: / G6
Linux: - t pp6

/1 4{Y| Nt d

Sets| MPLICI T
NONE by default.

Windows: / 4Yd
Linux: ON

/ Unane

- Unane

Removes a defined
macro; equivalent to an
#undef
preprocessing
directive.

OFF

/ Qunroll[n]

-unrol I [n]

- Use N to set
maximum number of
times to unroll a loop.
- Omit N to let the
compiler decide
whether to perform
unrolling or not.

- Use N =0 to disable
unroller.

The Itanium compiler
currently uses only N =
0; all other values are
NOPs.

ON

68

Changes routine
names to all uppercase
characters.

/ Qupper case - upper case

Windows: ON
Linux: OFF

None -use_asm Generates an
assembly file and tells
the assembler to
generate the object file.

OFF

None -use Support Microsoft style

assembly language
insertion using MASM
style syntax and if
reguested, output
assembly in MASM
format.

OFF

Displays compiler

/'Vstring -Vstring version information.

OFF

Shows driver tool
None -V commands and
executes tools.

OFF

. . Enables/disables
I4{Y| Nyportlib |-Vaxlib linking to portlib library

(I i bPEPCF90. a) in
the compilation.

OFF

Enables/disables

ON

Controls amount of
vectorizer diagnostic
information as follows:
N = 0: no information
N = 1: indicate
vectorizer integer loops
N=2sameasn=1
plus non-vectorizer
integer loops
N=3:sameasn=1
plus dependence
information.

N = 4: indicate non-
vectorized loops

N =5: indicate non-
vectorized loops and
prohibiting data
dependence
information.

n=1

Enables support for I1/O
and DEC extensions to
Fortran that were
introduced by Digital
VMS and Compaq
Fortran compilers.

OFF

Suppresses all warning

I'w -W messages.

OFF

69

Suppresses warning
messages about non-
standard Fortran
features used.

/ Wo0 None

ON

Disables display of
warnings.

/w0 -w0

OFF

/ Wl -wl Displays warnings.

ON

Issues a warning about
out-of-bounds array
references at compile
time.

/ \\B -\\B

OFF

: : A whole program

/' Qap_i po - Wp_t po assertion flag for
multifile optimization
with the assumption
that all user variables
and user functions
seen in the compiled
sources are referenced
only within those
sources. The user must
guarantee that this
assumption is safe.

OFF

Generates processor-
specific code
corresponding to one of
codes: i , M K, and W
while also generating
generic IA-32 code.
This differs from

- ax{ n} in that this
targets a specific
processor. With this
option, the resulting
program may not run
on processors older
than the target
specified.
i = Pentium Pro &
Pentium Il processor
information

M= MMX(TM)
instructions

K = streaming SIMD
extensions W=
Pentium 4 and Xeon
new instructions

OFF

/X -X Removes standard OFF
directories from the
include file search.

None -y Err]ll?fles syntax check |OFF

70

| Qzero

-zZero

Implicitly initializes to
zero all data that is
uninitialized otherwise.
Used in conjunction
with - save.

OFF

I Zp
{1] 2] 4] 8] 16}

_Zp
{1] 2| 4] 8] 16}

Specifies alignment
constraint for structures
on 1-, 2-, 4-, 8- or 16-
byte boundary.

Windows: OFF
Linux:
IA-32: - Zp4

Itanium Compiler:

-Zp8

71

Getting Started with the Intel®
Fortran Compiler

Invoking Intel Fortran Compiler

The Intel® Fortran Compiler has the following variations:

= Intel® Fortran Compiler for 32-bit Applications is designed for I1A-32 systems, and its
command is | f C. The IA-32 compilations run on any IA-32 Intel processor and produce
applications that run on 1A-32 systems. This compiler can be optimized specifically for one or
more Intel IA-32 processors, from Intel® Pentium® to Pentium 4 to Celeron(TM) and
Xeon(TM) processors.

= Intel® Fortran Itanium(TM) Compiler for Itanium(TM)-based Applications, or native compiler,
is designed for Itanium architecture systems, and its command is €f C. This compiler runs on
Itanium-based systems and produces Itanium-based applications. Itanium-based
compilations can only operate on Itanium-based systems.

You can invoke compiler from:
= Compiler command line
= Makefile command line

ENote

The Itanium-based applications will not run on an 1A-32 system even if they have been
developed and compiled with the Itanium cross compiler. See Running Itanium-based
Applications Compiled on IA-32 Systems.

Invoking from the Compiler
Command Line

To invoke the Intel® Fortran Compiler from the command line requires these steps :
1. Set the environment variables
2. Issue the compiler command, i f ¢ or ef C

Setting the Environment Variables

Set the environment variables to specify locations for the various components. The Intel Fortran
Compiler installation includes shell scripts that you can use to set environment variables. From
the command line, execute the shell script that corresponds to your installation. With the default
compiler installation, these scripts are located at:
IA-32 systems:

/opt/intel/conpiler60/ia32/bin/ifcvars.sh

ltanium(TM)-based systems:
/opt/intel/conpiler60/ia64/bin/efcvars. sh

72

Running the Shell Scripts

To run the ifcvars.sh script on IA-32, enter the following on the command line:
pronpt>. /opt/intel/conpiler60/ia32/bin/ifcvars.sh

If you want the | f cvar s. sh to run automatically when you start Linux*, edit your
. bash_profi | e file and add the following line to the end of your file:

set up environment for Intel conpiler ifc
/opt/intel/conpiler60/ia32/ bin/ifcvars.sh

The procedure is similar for running the ef cvar s. sh shell script on Itanium-based systems.

Command Line Syntax

The command for invoking the compiler depends on what processor architecture you are
targeting the compiled file to run on, 1A-32 or Itanium(TM)-based applications. The following
describes how to invoke the compiler from the command line for each targeted architecture.

* Targeted for IA-32 architecture: pronpt >i fc [options] filel.f

[file2.f . . .] [linker_options]
* Targeted for Itanium architecture: pronpt>efc [options] filel.f
[file2.f] [linker_options]
FINote

Throughout this manual, where applicable, command line syntax is given for both IA-32-
and Itanium-based compilations as seen above.

Indicates one or more command-line options. The compiler recognizes

options one or more letters preceded by a hyphen (-) as an option.
Some options take arguments in the form of filenames, strings, letters,
or numbers. Except where otherwise noted, you can enter a space
between the option and its argument(s) or you can combine them.
. . Indicates one or more files to be processed by the compilation system.
filel, file2 . R y P y

You can specify more than one f i | €. Use a space as a delimiter for
multiple files. See Compiler Input Files.

- Ldi r -instruct linker to search di r for libraries

| i nker _options o
- | name - link with library named name

FJ Note

Specified options on the command line apply to all files. For example, in the following
command line, the - C and - W options apply to both files X. f andy. f :

prompt>ifc -c x.f -wy.f

pronpt>efc -c x.f -wy.f

Command Line with make

To specify a number of files with various paths and to save this information for multiple
compilations, you can use makefiles. To use a makefile to compile your input files using the
Intel® Fortran Compiler, make sure that/ usr/ bi nand/ usr/ | ocal / bi n are on your
path.

If you use the C shell, you can edit your . cShr cC file and add

setenv PATH /usr/bin:/usr/local/bin:<your path>

73

Then you can compile as
make -f <Your nekefil e>

where - f is the make command option to specify a particular makefile.

For some versions of make, a default Fortran compiler macro F77 is available. If you want to use
it, you should provide the following settings in the startup file for your command shell:

* OnanlA-32system: F77 ifc
= On an Itanium(TM)-based system: F77 efc

Input Files

The Intel® Fortran Compiler interprets the type of each input file by the filename extension; for
example,. a,.f,.for,. 0, andsoon.

Filename Interpretation |Action
filenane. a object library Passed to | d.
. Fortran source Compiled by Intel® Fortran Compiler,
filename. f assumes fixed-form source.
. Fortran source Compiled by Intel Fortran Compiler; assumes
filenane.ftn fixed form source.
Fortran source Compiled by Intel Fortran Compiler; assumes

filenane. for fixed form source.

Fortran fixed-form |Preprocessed by the Intel Fortran

filenane.fpp

source preprocessor f pp; then compiled by the Intel
Fortran Compiler.
. Fortran 90/95 Compiled by Intel Fortran Compiler; free-form
filename. 90 source source.
filenane. F Fortran fixed-form |Passed to preprocessor (f pp) and then
) source compiled by the Intel Fortran compiler

fil ename. s IA-32 assembly file |Passed to the assembler.

Itanium(TM) Passed to the Intel Itanium assembler.
assembly file

Compiled object |Passedto| d(1) .
module

You can use the compiler configuration file i f c. cf g for IA-32 or ef c. cf g for Itanium-based
applications to specify default directories for input libraries and for work files. To specify additional
directories for input files, temporary files, libraries, and for the assembler and the linker, use
compiler options that specify output file and directory names.

Default Behavior of the Compiler

filenane.s

filenane.o

Default Behavior Overview

By default, the compiler generates executable file(s) of the input file(s) and performs the following
actions:

= Searches for all files, including library files, in the current directory
= Searches for any library files in directories specified by the LI B variable, if they are not

74

found in the current directory.
= Passes options designated for linking as well as user-defined libraries to the linker
= Displays error and warning messages
= Supports the extended ANSI standard for the Fortran language.

= Performs default settings and optimizations using options summarized in the Deafult
Behavior of the Compiler Options section.

» For IA-32 applications, the compiler uses use - t pp6 option to optimize the code for the
Pentium Pro®, Pentium® I, and Pentium Il processors.

For unspecified options, the compiler uses default settings or takes no action. If the compiler
cannot process a command-line option, that option is passed to the linker.

Default Behavior of the Compiler Options

If you invoke the Intel® Fortran Compiler without specifying any compiler options, the default
state of each option takes effect. The following tables summarize the options whose default
status is ON as they are required for Intel Fortran Compiler default operation. The tables group
the options by their functionality.

Per your application requirement, you can disable one or more options.

For the default states and values of all options, see the Compiler Options Quick Reference
Alphabetical table. The table provides links to the sections describing the functionality of the
options. If an option has a default value, such value is indicated. If an option includes an optional
minus [-] , this option is ON by default.

The following tables list all options that compiler uses for its default execution.

Data Setting and Language Conformance

Default Option Description

.79 - 72, - 80, - 132 specifies the column length for fixed
) form source only. The compiler might issue a warning for
non-numeric text beyond 72 for the - 72 option.

Analyzes and reorders memory layout for variables and

-align

arrays.
- ansi -ansi [-] enables assumption of the program's ANSI
conformance.
r4 Specifies the size of the real numbers to four bytes.

-r{ 8| 16} works the same as - al i gn only with
specific setings: specifies the size of real numbers to 8
(IA-32 systems, same as - aut odoubl e) or 16 bytes
for Itanium(TM) compiler.

Makes scalar local variables AUTOVATI C.

-aut o_scal ar

Enables DEC* parameter statement recognition.

- dps
_ia -1 { 2| 4| 8} defines the default KI ND for integer
variables and constants in 2, 4, and 8 bytes.
Controls the case of routine names and external linker
-1 ower case symbols to all lowercase characters.
_pad Enables changing variable and array memory layout.
- pc64, I1A-32 only - pc{ 32| 64| 80} enables floating-point significand

precision control as follows: - PC32 to 24-bit significand,

75

- pc64 to 53-bit significand, and - pc 80 to 64-bit
significand.

Saves all variables in static allocation. Disables

-save - aut o, that is, disables setting all variables
AUTOVATI C.
fali Aligns stack for functions with 8 or 16 byte variables.
-stalign8 -sfalignl16- with 16 byte variables;
-sfalign - all functions;
-sfalign- - disables stack alignment for all functions.
U Sets | MPLI CI T NONE.
- us Appends an underscore to external subroutine names.
IA-32: | Zp4 - Zp{ n} specifies alignment constraint for structures on

Itanium systems: / Zp8

1-, 2-, 4-, 8-, or 16-byte boundary. To disable, use
-align-.

Optimizations

Default Option

Description

_fp

Disables the use of the ebp register in
optimizations. Directs to use the ebp-based stack
frame for all functions.

-ip_no_inlining

Disables full or partial inlining that would result from
the - I p interprocedural optimizations. Requires
-ipor-ipo.

-1 PF_frma
Itanium(TM) compiler

Enables the contraction of floating-point multiply
and add/subtract operations into a single operation.

-1 PF_fp_specul ati on

f ast

Itanium compiler

Sets the compiler to speculate on floating-point
operations. - | PF_f p_specul at i onof f
disables this optimization.

-1 PF_fltacc

Itanium compiler

Enables the compiler to apply optimizations that
affect floating-point accuracy. By default, the
compiler may apply optimizations that affect
floating-point accuracy. - | PF_f |t acc-
disables such optimizations. - | PF_f | tacc- is
effective when - NP is on.

-1 po_obj

Itanium compiler

Forces the generation of real object files. Requires
-1 po.
IA-32 systems: OFF

-0 -0, -2

Optimize for maximum speed.

-opennp_reportl

Indicates loops, regions, and sections parallelized.

-opt _report _|evelmn

Specifies the minimal level of the optimizations
report.

-par _reportl

Indicates loops successfully auto-parallelized.

76

Optimizes code for the Pentium Pro®, Pentium II,

-tpp6 and Pentium III processors for I1A-32 applications.
IA-32 only
_unrol | -unrol | [n] : omit N to let the compiler decide

whether to perform unrolling or not (default).
Specify N to set maximum number of times to
unroll a loop.

The Itanium compiler currently uses only

n =0, -unrol | O (disabled option) for
compatibility.

-vec_reportl

Indicates loops successfully vectorized.

Compilation

Default Option

Description

-falias

Enables aliasing in program.

-ffnalias

Enables aliasing across functions.

-fverbose-asm

Produces assembly file with compiler comments
including compiler version and options used.

Enables CVF conditional and # directives.

-fppl -fpp{ 0] 1| 2| 3} runs the Fortran preprocessor
(fpp) on Fortran source files (. f,. ftn,. for, and
. T 90 files) prior to compilation.

- SOX Enables saving of compiler options and version in the

executable. For Itanium-based systems, accepted for
compatibility only.

Messages and Diagnostics

Default Option

Description

-cerrs

Enables errors and warning messages to be printed
in a terse format. To disable, use - Ce€rr s-.

-wl

Displays warnings.

Disabling Default Options

To disable an option, use one of the following as applies:
= Generally, to disable one, group or all options, use - Q0 option. For example:

IA-32 applications:

prompt>ifc -O2 -Q0 input_file(s)

Itanium-based applications:

pronpt>efc -2 -Q0 input _file(s)

77

FINote

The - Q0 option is part of a mutually-exclusive group of options that includes -00, -O, -
Q1, - @2, and - O3. The last of any of these options specified on the command line will
override the previous options from this group.

« To disable options that include optional "-" shown as [-] , use that option in the
command line in this format: - opt i on- .

+ To disable options that have { N} parameter, use N=0 version in this format:
- opti onO.

Resetting Default Data Types

To reset data type default options, you need to indicate a new option whch overrides the default
setting. For example:

IA-32 applications:

pronmpt>ifc -i2 input _file(s)
Itanium-based applications:
pronpt>efc -i12 input _file(s)

Option - i 2 overrides default option - | 4.

Default Libraries and Tools

For the libraries provided with Intel® Fortran Compiler, see 1A-32 compiler libraries list and
Itanium(TM) compiler libraries list.

The default tools are summarized in the table below.

Tool Default Provided with Intel
Fortran Compiler
IA-32 Assembler Linux Assembler,aS |No
Itanium(TM) Assembler Intel® Itanium(TM) Yes
Assembler
Linker No

You can specify alternate to default tools and locations for preprocessing, compilation, assembly,
and linking.

Assembler

By default, the compiler generates an object file directly without calling the assembler. However, if
you need to use specific assembly input files and then link them with the rest of your project, you
can use an assembler for these files.

IA-32 Applications

For 32-bit applications, Linux supplies its own assembler, aS. For Itanium-based applications, to
compile to assembly files and then use an assembler to produce executables, use the Itanium
assembler, | as.

Itanium-based Applications

If you need to assemble specific input files and link them to the rest of your project object files,
produce object files using Intel® Itanium(TM) assembler with | aS command. For example, if you
want to link some specific input file to the Fortran project object file, do the following:

1. Issue command using - S option to generate assembly code file, fi | e. s.

pronpt>efc -S -c file.f

78

2. To assembile the file.s file, call Itanium(TM) assembler with this command:
pronpt>ias -Nso -p32 -o file.o file.s

where the following assembler options are used:

- NS0 suppresses sign-on message

- p32 enables defining 32-bit elements as relocatable data elements. Kept for backward
compatibility

-of i | @ indicates the output object file name

The above command generates an object file which you can link with the Fortan object file of the
whole project.

Linker

The compiler calls the system linker, | d(1) , to produce an executable file from object files. The
linker searches the environment variable LD LI BRARY PATHto find available libraries.

Compilation Phases

To produce the executable file filename, the compiler performs by default the compile and link
phases. When invoked, the compiler driver determines which compilation phases to perform
based on the extension to the source filename and on the compilation options specified in the
command line.

The table that follows lists the compilation phases and the software that controls each phase.

Phases Software |IA-32 or Itanium Architecture
Preprocess (Optional) f pp Both

Compile f90com Both

Assemble i as Itanium architecture

Link | d Both

The compiler passes object files and any unrecognized filename to the linker. The linker then
determines whether the file is an object file (. 0) or a library (. &). The compiler driver handles all
types of input files correctly, thus it can be used to invoke any phase of compilation.

Application Development Cycle

The relationship of the compiler to system-specific programming support tools is presented in the
Application Development Cycle diagram.

The compiler processes Fortran language source and generates object modules. You decide the
input and output by setting options when you run the compiler. The figure shows how the
compiler fits into application development environment.

79

Application Development Cycle
'

Phasze I
Transkticn

Y

Phasze I

ls=r
Libramy

Linkaoe

e

Frase I
Executich

CMOav 4

80

Customizing Compilation
Environment

Customizing Compilation
Environment Overview

To customize the environment used during compilation, you can specify the variables, options,
and files as follows:

= Environment variables to specify paths where the compiler searches for special files such as
libraries and "include" files

= FCE options to use FCE tools; for details on FCE structure, see Fortran Compilation
Environment (FCE).

= Configuration files to use the options with each compilation
= Response files to use the options and files for individual projects
= Include Files to use for your application

Environment Variables

Use the LI B and PATH environment variables that enable the compiler to search for libraries or
I NCLUDE files. You can establish these variables in the startup file for your command shell. You
can use the env command to determine what environment variables you already have set.

You can also set the PATH and LD_LIBRARY_PATH in your .login file only, there will
no longer be any need to execute the setting variables script before running the
compiler.

The following variables are relevant to your compilation environment.

Specifies a configuration file, which the compiler should
EFCCFG use instead of the default configuration file for the
Itanium(TM) compiler.
| ECCEG Specifies a configuration file, which the compiler should
use instead of the default configuration file for the IA-32
compiler.

LIB Specifies the directory path for the math libraries.

Specifies the numbers of the units to be used for little-
B—XEMFEN endian-to-big-endian conversion purposes.

| NCL UDE Specifies the directory path for the include files.

PATH ﬁlzi(.:mes the directory path for the compiler executable
VP Specifies the directory in which to store temporary files. If

the directory specified by TMP does not exist, the
compiler places the temporary files in the current
directory.

81

Configuration File Environment Variables

| FCCFGand EFCCFGenvironment variables specify a configuration file, which the compiler
should use instead of the default configuration file. The default configuration files are i f ¢. cf g
for the 32-bit Intel Fortran compiler and ef c. cf g for the Itanium compiler in the / bi n
directory, and by default, the compiler always picks up the . cf g file from the same directory
where the compiler executable resides. However, if the user needs to use configuration file in a
different location, they can use | FCCFGor EFCCFG environment variable and assign the
directory and filename of the . Cf g file that needs to be picked up by the compiler.

FCE Options

The following table shows the Fortran Compilation Environment (FCE) options and what you can
do with them.

Invokes the binder to generate the list of objects required to construct a
complete program, given the name of the main program unit within the file.
The list is passed to the linker, | d('1).

- bd, pr ognane

Specifies a program unit catalog list to be searched for modules referenced
in the program in USE statements

-cl,file

Indicates an independent compilation, that is, the FCE of the Intel Fortran
Compiler is not accessed or updated. A MODULE or USE statement in the
source will cause the compiler to generate an error.

-ic

Sets root directory of compiler installation. The directory indicated in di r

-Qnstall, dir will contain all compiler install files and subdirectories.

Configuration Files

To decrease the time when entering command line options and ensure consistency of often-used
command-line entries, use the configuration files. You can insert any valid command-line options
into the configuration file. The compiler processes options in the configuration file in the order
they appear followed by the command-line options that you specify when you invoke the
compiler.

ENote

Be aware that options placed in the configuration file will be included each time you run the
compiler. If you have varying option requirements for different projects, see Response
Files.

These files can be added to the directory where Intel® Fortran Compiler is installed.

Examples that follow illustrate sample . Cf g files. The pound (#) character indicates that the rest
of the line is a comment.

IA-32 applications: i f c. cf g
You can put any valid command-line option into this file.

Sanple ifc.cfg file for 1A 32

appl i cations
#HH
Define preprocessor nmacro MY _PRQIECT.

- Dy _proj ect
HH

Set extended-length source |ines.

82

-132

#H#t

Set maxi mum fl oati ng-poi nt significand
preci si on.

- pc80

#H#t

Link with alternate I/O library for
m xed output with the

C | anguage.

-C90

Itanium(TM)-based applications: ef c. cf g

Sanple efc.cfg file for ItaniumTM -
based applications
HH

Define preprocessor nmacro MY PRQIECT.
- Dy _proj ect
#Hit

Enabl e ext ended-|ength source lines.
-132

HH

Link with alternate I/O library for
m xed output with the

C | anguage.

- C90

Response Files

Use response files to specify options used during particular compilations for particular projects,
and to save this information in individual files. Response files are invoked as an option on the
command line. Options specified in a response file are inserted in the command line at the point
where the response file is invoked.

Response files are used to decrease the time spent entering command-line options, and to
ensure consistency by automating command-line entries. Use individual response files to
maintain options for specific projects; in this way you avoid editing the configuration file when
changing projects.

You can place any number of options or filenames on a line in the response file. Several
response files can be referenced in the same command line.

The syntax for using response files is as follows :

IA-32 applications:

pronpt>i fc @esponse _fil enane

pronpt>i fc @esponse_filenanel @ esponse fil enane2
Itanium(TM)-based applications:

pronpt >ef c @ esponse_fil enane

pronpt >efc @esponse_fil enanel @ esponse fil enane2

ENote

An "at" sign (@ must precede the name of the response file on the command line.

83

Include Files

Include files are brought into the program with the #i ncl ude preprocessor directive or the

I NCLUDE statement. The standard include files are defined in the directories specified in the
INCLUDE environment variable. In addition, you can define a specific location of include files with
the compiler options, - | di r and - X. See Searching for Include Files in Preprocessing.

Fortran Compilation Environment
(FCE)

FCE Overview

You can customize the compilation process of your Fortran programs with the Fortran
Compilation Environment (FCE) included with the Intel® Fortran Compiler. FCE provides a
methodology of handling compilation according to the size and structure of your program. In
addition, the FCE provides a methodology for code reusability and other automated features. The
modular approach also facilitates several levels of use, from short programs to complex and
large-scale projects.

This section describes the essential components of the Intel® Fortran Compilation Environment
(FCE) of the Intel Fortran Compiler:

= Obiject files

= Dictionary files

= Program Unit Catalog Files and Program Unit Catalog List Files

= The FCE Manager Utility

= Binder

The Binder program scans the FCE to create a list of objects required to build the program.

In addition, this section describes the essential structure of Fortran program units and how to
compile them: Fortran programs with and without modules and stale program units.

Object Files and Dictionary Files

The Intel Fortran compiler generates one of two file types from your source:

File Description

Object File Compiled from your source by the compiler; the linker

file.o) uses these files to produce the executable file; generated
if the source contains executable code, or if it is a BLOCK
DATA subprogram.

Dictionary File Generated by the compiler if the source contains one or

file.d more modules; provides an encoded dictionary of public
objects; includes encoding for inter-module object usage.

84

Program Unit Catalog Files

Program Unit Catalogs are created by the compiler to store the FCE for the executable. Each
execution of the Intel® Fortran Compiler command generates critical FCE information, primarily
the module information for Fortran 95 programs, and places it in the program unit catalog file
(PUCF) wor k. pc in the current compilation directory. This file contains long-lived information
and should not be deleted unless it is planned to recompile the entire application from scratch.
The compiler adds the PUCF filename to the list contained in a program unit catalog list file
(PUCLF). The default PUCLF file in the installation / bi n directory is:
/opt/intel/conpiler60/ia32/bin/ifc.pcl or
/opt/intel/conpiler60/ia64/bin/efc.pcl.

At installation, you will see the following entries in this file:

IA-32 compiler:

wor K. pc: the PUCF in the user’s current directory

<installation directory>/bin/ifc.pcl: thePUCLF inthe installation
directory

Itanium(TM) compiler:

wor K. pc : the PUCF in the user’s current directory

<installation directory>/bin/efc.pcl:the PUCLF in the installation
directory

Specifying the Name and Path of the PUCLF

The default PUCLF is shared by all users of the compiler installation. Therefore, you may prefer
to specify a different name for the PUCLF file with - C| . For example, to compilefi | €. f in
the current directory, type the following:

IA-32 compiler:
ifc -cl,nyfile.pcl file.f
Itanium compiler:

efc -cl,nyfile.pcl file.f

This will add to the default or create a PUCLF myf i | e. pcl in the current directory. You may
add entries for additional PUCF files with a text editor, or by specifying in the - c| parameter of a
subsequent compilation another PUCLF (including the path) with the entries you need.

The order of program unit catalogs within a program unit catalog list file determines the order in
which the compiler searches for catalogs during compilation. You can share FCEs among
modules with non-concurrent compilations. For example, if two catalogs contain the module
referenced in the USE statement, the compiler selects the first version referenced. However,
within a single catalog, the names of program units must be unique. Violating this restriction can
cause some of your programs to be built incorrectly.

You can specify the file path for external modules in a program unit catalog list file. You can
create or modify this file with any text editor to give access to the modules referenced in the USE
statements.

Guidelines for the PUCLF

Observe these guidelines when creating or editing a program unit catalog list file:
= In the first line, specify the file name of the work catalog.

= In succeeding lines, you can specify the full path names of other program unit catalogs in
which to search.

85

By default the compiler creates a catalog list file named i f c. pcl oref c. pcl with the
following entry in it: wor K. pc. The default PUCLF name can be changed with the - c| option
parameter either on the command line or in the configuration file 1 f c. cf gorefc. cfg.
To use modules compiled in other directories, you can explicitly create your own program unit
catalog list file and use whatever file name you want; for example, mywor k. pcl .

Your catalog list file mywor K. pcl might contain the following:

wor k. pc
/ homre/ usr/ nod1/ wor k. pc
/ home/ usr/ nod2/ wor k. pc

Z}Note:

Make sure to never use blanks in the directory names.

An Example of Development Organization

Consider a project involving a number of developers, each requiring the capability to build a test
version of the software. The project consists of a mix of common program units and other
program units trusted to work correctly and used by individual programmers. A suitable
organization might be as follows:

= Trusted common program units are compiled in a number of directories:
/usr/trustedl, /usr/trusted2, ... , /usr/trustedn.

= Each user specifies a directory in which program units are compiled. Each directory contains
a program unit catalog list file with the contents as follows:

myownwor k. pc
/ home/ t rust edl/ t rust ed. pc
/ homre/ t rust ed2/ t r ust ed. pc

/hone]trustedn/trusted.pc

where My ownwor K. pc is a developer’s personal work catalog, and the trusted common
program units are referenced by the t r ust ed. pc program unit catalogs in their respective
directories.

Since each developer has a private work catalog, concurrent compilations cannot interfere with
each other. Further, shared concurrent compiler access to the trusted common program units is
easier.

The FCE Manager Utility

The FCE Manager (FCEM) is a utility that enables you to interrogate and update program unit
catalogs belonging to an FCE. It is activated by the command | f ccem(lA-32 compiler) or
ef ccem(ltanium(TM) compiler) and by default prompts for commands from the keyboard.
However it may also be operated in script files as follows:
IA-32 compiler:
i fccem <<!

commands

I
Itanium compiler:
ef ccem <<!

commands
I

86

To obtain information on the set of commands available, use the command h (help). If h (help) is
followed by the name of a command, it provides a detailed explanation of that command. The
command g (quit) terminates execution of the FCEM.

ENO'[G:

When you are developing your Itanium-based application, and the application contains
MODUL Es, you must be careful to compile all of your code on the same host, regardless of
the target platform. For example, if you are developing applications for an Itanium-based
platform on an 1A-32 host, you must compile all of your code on the 1A-32 host. You cannot
use a work.pc (program catalog) file generated on one platform when compiling on another
platform. Also, you must use the FCE tool for the host where you compiled your code,
rather than the FCE tool for the other platform.

The table that follows lists FCE manager commands with brief descriptions.

FCE Manager Commands

Command

Description

Syntax

C

Clear a program unit catalog.

cl <puc>

Example:

cl test.pc

Removes all program units from program unit catalog
test. pc.

co

List compilation order

co pu pucli st

Examples:

co LIST test. pc

Lists a valid compilation order for program units
belonging to the program LI ST, and sought in program
unit catalog t est . pc.

co MAI N. PROGRAM <pucl i st >

Lists a valid compilation order for program units
belonging to MAI N. PROGRAM and sought in the
program unit catalogs whose names are given by puclist.

cp

Copy program units

cp from puc
to_puc pulist

Examples:

Cp test.pc test2. pc

Copies all program units from test.pcto t est 2. pc.
Cp test.pc test2.pc A B

Copies program units A and B from program unit catalog
t est . pc to program unit catalog t est 2. pc.

Ccr

Create a program unit catalog

Cr puc

Example:
cr test.pc
Creates the new program unit catalog t €st . pc.

fi

Find a program unit

fi pu puclist

87

Examples:

fi EX test.pc test2.pc

Finds program unit EXin program unit catalogs
test.pcandtest?2. pc
fi TEST <puclist>

Finds program unit TEST in the program unit catalogs in
file puclist.

Find users of a program unit

fu fu pu puclist
Examples:
fu MO test.pc test2.pc
Finds users of module MOD in progr.unit catalogs
test.pcandtest?2. pc
fu MOD2 <puclist>
Finds users of MOD2 in the program unit catalogs
specified in file pucl i st .
h Provide help information h [command]
Examples:
h
Lists all the available FCEM commands.
h rm
Lists help information about the command r m
I's List program units |'s [options]
puc [pulist]
Examples:
| s test.pc
Produces a brief listing of program units in program unit
catalogt est . pc.
ls /al test.pc
Produces a full listing of program unitsint est . pc in
alphabetic order.
s /I /t test.pc BZ CA
Produces a full listing of program units B, Z, Cand Ain
program unit catalog t €St . pc, in order of creation
date/time.
o Modify recorded object file names Mo hame puc

[bol dest]

Examples:

no nylib.a test.pc

Modifies all recorded object file names of program units
in the program unit catalog t €St . pc to indicate their
presence in the object library nyl i b. a.

no newobj .0 work.pc obj.o

In the program unit catalog Wor K. pc, modifies those
program units which have a recorded object file name of
obj . 0 to have the recorded object file name
newobj . o.

nmo nylib.a test.pc obj1l.0

88

ol dii b[obj 2. 0]

In the program unit catalog t €st . pc, modifies those
program units which have a recorded object file name of
obj 1. oorol dli b[obj 2. 0] so that the recorded
object file name indicates its presence in library

nylib. a.

Terminates execution of i f ccem

Example:

rm

Remove program units

puc puli st

Examples:

rmtest.pc A

Removes program unit A from program unit catalog
test. pcC.

rmtest2.pc ABC

Removes program units A, B, and Cfrom program unit
catalog t est 2. pc.

The Binder

The binder is a program activated by the compiler option - bd, which scans an FCE to generate
the list of objects required to build the program. It then presents the listto | d(1) for linking. The
figure below shows how the binder relates to the rest of the FCE.

89

Intel Fortran Compilation Environment with the Binder

Source File

i

Compiler

Module
Dnetionary
Files
Program lJnltl f!
Catalog List Module

Dictionary

File Ohbject
Program Unit File
Catalogs

b J
. Ohhject
Bunder File Linker
Mameas
Program Unit

Catalog List Name
(/cl)

Fortran 9% Compilation Environment

Executable Program

Activating the Binder
The format of the option -bd is the following:
- bd, mai npr ogr ammane

where mai npr ogr annane is the name specified in the PROGRAMstatement of the main
program, or is MAI N. PROGRAMIf no PROGRAMSstatement is present.

A command line invoking i f ¢ (IA-32 compiler) or ef ¢ (Itanium(TM) compiler) to compile
Fortran source can also include a - bd option to invoke the binder; in this case, the results of the
compilation are available to the binder.

The binder assumes that all objects belonging to the program are in the FCE defined by the
program unit catalog list file specified by option - ¢l or by wor K. pc if the option - C| is not
specified. Any other objects, for example non-Fortran objects, that are required in the linking
stage, must be specified explicitly through the compiler.

90

Advantages of Using the Binder

The binder provides three principal advantages:
= |t automatically defines the objects to be included in a large scale project.
= |t detects and flags stale modules, as described in the preceding section.

= |t searches program unit catalogs in the order specified in the program unit catalog list file, so
enabling the user to distinguish between identically named program units in different
catalogs.

The use of the binder is not mandatory. Objects may be specified explicitly on the compiler
command invocation line if desired.

Dependent and Independent Compilation

You can independently compile units that comprise a Fortran program. These units include the
following:

= main program

= external subroutines

= external functions

= block data subprograms

Prior to Fortran 90, compilation of a program unit did not require data from the compilation of
another unit. Consequently, the order of compilation of units did not affect the output.

For Fortran 95 programs, this is not always the case. The addition of modules to the language
introduces a compilation dependence. A module can reference other program units with the USE
statement. In contrast to independent units, dependent units require data from another module
that must be compiled first. Thus, the dependence introduces an order that you must follow to
compile program units.

You can compile the dependent and independent units in the same source module or in separate
source files. However, the dependent file must compile after the file on which it depends.

Fortran Programs with or without Modules

There are two ways of working with multimodule programs depending on the scale of your
project.

Small-Scale Projects

In a small-scale project, the source files are in a single directory, so module management is not
an issue. A simple way to compile and use modules is to incorporate a module before a program
unit that references it with USE. In this case, sources may be compiled and linked in the same
way as FORTRAN 77 sources; for example if f i | 1. f contains one or more modules and
file2.f contains one or more program units that call these modules with the USE directive.
The sources may be compiled and linked by the commands:

IA-32 applications:
ifc filel.f file2.f

or
ifc -c filel.f (where- C option stops the compilation after an . O file has been created)

ifc filel.o file2.f

Itanium(TM)-based applications:

efc filel.f file2. f

91

or
efc -c filel.f (where- C option stops the compilation after an . O file has been created)

efc filel.o file2.f

Larger-Scale Projects

In a larger-scale software project, module management becomes a significant issue. The Intel
Fortran Compiler incorporates the following features to ease this task:

variable grouping of program units in program unit catalogs

= variable module search path

= detection of stale program units

= utilities to find, copy, delete and display program unit catalog entries

= program binder to construct an inventory of objects for linking

By default, i f ¢ (IA-32 compiler) or ef ¢ (Itanium compiler) compiles each program unit_for

multimodule usage in the FCE. If you wish to specify independent compilation, use the -1 C
option:

IA-32 compiler:

ifc -ic file.f

Itanium compiler:

efc -ic file.f

f)Note

The current version of the Intel Fortran Compiler does not support STRUCTURES or Cray
pointers within the Fortran modules.

Fortran Programs Without Modules

If you do not use modules in your programs, you can still benefit from the FCE through the use of
its binder. The binder provides features to automate your compilation tasks and expedite your
application development. These features are part of the FCE structure.

Stale Program Units

When a program unit, ML, uses a module, M2, the compilation of ML is up-to-date if it occurred
after the latest compilation of V2. Otherwise, module ML is stale and may require recompilation.
Stale program units often occur in large-scale development. They are detected and flagged both
by the compiler and by the binder. A typical scenario involves at least three sources, fi | el. f,
file2.f andfil e3. f, and a compilation sequence as shown in the following example.

Example of Compilation Sequence without a
Stale Program Flag

filel.f
nodul e nodl

ehd nodul e nodl
file2. f
nodul e nod2

92

use nodl

ehd nodul e nod2
file3.f
program p

uée nod2

end program p

The table that follows shows the compilation sequence for IA-32 applications without and with
issuing the stale program flag. The same sequence is used for Itanium-based applications with
the ef ¢ command instead of | f C. The left column reflects a small-scale project with the
program files compiled in proper order. The right column reflects possibly a larger-scale program
compilation. Program P had been compiled with the binder option, - bd, right after f i | el. f
had been edited and recompiled, while f i | €2. f (which uses nod1 from f i | e1. f) had not
been recompiled. In such a case, the binder flags the module Mod?2 as stale and issues a
message. The programmer then has to recompile NDd2.

Stale Program Flag
No Stale Program Flag Stale Program Flag Issued

edit filel.f etc |ifc -c filel.f

ifc -c filel. f ifc -c file2.f
ifc -c file2.f ifc -c file3.f
ifc file3.f edit filel.f

ifc -c filel. f

ifc -bd, P 3

93

Customizing Compilation
Process

Customizing Compilation Process
Overview

This section describes options that customize compilation processpreprocessing, compiling, and
linking. In addition, it discusses various compilation output and debug options and also shows
how little-endian-to-big-endian conversions are enabled for unformatted sequential files.

You can find information on the libraries used by compiler to which you can link, compiler
diagnostics, and mixing C and Fortran in the respective sections.

Specifying Alternate Tools and
Locations

The Intel® Fortran Compiler lets you specify alternate to default tools and locations for
preprocessing, compilation, assembly, and linking. Further, you can invoke options spgcific to
your alternate tools on the command line. This functionality is provided by - Q ocat i on and -
Qoption.

Specifying an Alternate Component
(-Q ocation, t ool , pat h)

-Qlocation enables to specify the pathname locations of supporting tools such as the assembler,
linker, preprocessor, and compiler. This option's syntax is:

-Q ocation,tool, path

Designates one or more of these tools:
f pp Intel Fortran preprocessor

f Fortran compiler (f 90com)
asm |A-32 assembler

i as Itanium(TM) assembler

I'i nk Linker (I d(1))

The location of the component.

t ool

pat h

Example:

pronpt>i fc -Q ocation, fpp,/usr/preproc mnmyprog.f

94

Passing Options to Other Tools
(- Qoption, t ool , opts)

- Qopt i on passes an option specified by Opt s to at 00l , where opt S is a comma-
separated list of options. The syntax for this option is:

- Qoption, tool, opts

Designates one or more of these tools:
f pp Intel Fortran preprocessor

f Fortran compiler (f 90com)

I'i nk Linker (I d(1))

Indicates one or more valid argument
strings for the designated program.

If the argument contains a space or tab character, you must enclose the entire argument in
quotation characters (" "). You must separate multiple arguments with commas including those in
quotation marks.

The following example directs the linker to link with alternate 1/O library for mixed

output with the C language for respective targeted compilations.

IA-32 applications:

t ool

opts

pronpt>i fc -Qoption,link,-C90 progl.f
Itanium(TM)-based applications:

pronpt >efc - Qoption,link,-C90 progl.f

Preprocessing

Preprocessing Overview

This section describes the options you can use to direct the operations of the preprocessor.
Preprocessing performs such tasks as macro substitution, conditional compilation, and file
inclusion. You can use the preprocessing options to direct the operations of the preprocessor
from the command line. The compiler preprocesses files as an optional first phase of the
compilation.

The Intel® Fortran Compiler provides the f pp binary to enable preprocessing. If you want to use
another preprocessor, you must invoke it before you invoke the compiler. Source files that use a
. f pp or . Ffile extension are automatically preprocessed.

& Caution

Using a preprocessor that does not support Fortran can damage your Fortran code,
especially with FORIMAT statements. For example, FORMAT (\\ | 4) changes the
meaning of the program because the backslash "\ " indicates end-of-record.

Preprocessor Options

Use the options in this section to control preprocessing from the command line. If you specify
neither option, the preprocessed source files are not saved but are passed directly to the
compiler. Table that follows provides a summary of the available preprocessing options.

95

Option Description

CA-] Removes all predefined macros.

- Dnarne= Defines the macro name and associates it with the

{#| text}] specified value. The default (- Dnanme) defines a macro
with val ue =1.

“E Directs the preprocessor to expand your source module
and write the result to standard output.
Same as - E but does not include #| i ne directives in

-EP
the output.

E Preprocess to an indicated file.

_fpp{n} Uses the fpp preprocessor on Fortran source files.

pp n=0: disable CVF and #di r ect i ves n=1: enable

CVF conditional compilation and #di r ect i ves
(default) . .
N=2: enable only #di r ect i ves,
N=3: enable only CVF conditional compilation directives.

p Directs the preprocessor to expand your source module
and store the result in a file in the current directory.
Eliminates any definition currently in effect for the

Unare specified macro.

1dir Adds directory to the include file search path.
Removes standard directories from the include file search

-X path.

Preprocessing Fortran Files

You do not usually preprocess Fortran source programs. If, however, you choose to preprocess
your source programs, you must use the preprocessor f pp, or the preprocessing capability of a
Fortran compiler. It is recommended to use f pp, which is the preprocessor supplied with the
Intel® Fortran Compiler.

The compiler driver automatically invokes the preprocessor, depending on the source filename
suffix and the option specified. For example, to preprocess a source file that contains standard
Fortran preprocessor directives, then pass the preprocessed file to the compiler and linker, enter
the following command:

IA-32 applications:
pronpt>i fc source. fpp
Itanium(TM)-based applications:

pronpt >ef ¢ source. f pp

f) Note

Using the preprocessor can make debugging difficult. To get around this, you can save
the preprocessed file (- P), and compile it separately, so that the proper file information is
recorded for the debugger.

96

Enabling Preprocessing with Compiler Options

You can enable Preprocessor for any Fortran file by specifying the - f pp option. With - f pp, the
compiler automatically invokes the f pp preprocessor to preprocess files with the . f, . f or or
. T 90 suffix in the mode set by n:

N=0: disable CVF and #di r ect i ves; equivalent to no fpp

N =1: enable CVF conditional compilation and #di rect i ves (- f pplis default)
N =2: enable only #di r ect i ves

N =3: enable only CVF conditional compilation directives.

f)Note

Option - opennp automatically invokes the preprocessor.

String Constants for 1A-32 Systems

Intel Fortran f pp conforms to CPp and accepts the CPP style directives. The CPP prohibits to
use the string constant value in #i f expression. So f pp won't support it either.

Preprocessing Only: -E, - EP, - F,and - P

Use either the - E, - P, or the - F option to preprocess your . f pp source files without compiling
them.

When you specify the - E option, the Intel® Fortran Compiler's preprocessor expands your
source module and writes the result to standard output. The preprocessed source contains

#1 | ne directives, which the compiler uses to determine the source file and line number during
its next pass. For example, to preprocess two source files and write them to St dout , enter the
following command:

IA-32 applications:
pronpt>ifc -E progl.fpp prog2.fpp

Iltanium(TM)-based applications:

pronpt >efc -E progl. fpp prog2.fpp

When you specify the - P option, the preprocessor expands your source module and stores the
result in a file in the current directory. By default, the preprocessor uses the name of each source
file with the . T extension, and there is no way to change the default name. For example, the
following command creates two files named pr ogl. f and pr og2. f, which you can use as
input to another compilation:

IA-32 applications:
pronpt>ifc -P progl.fpp prog2.fpp

Itanium-based applications:

pronpt >efc -P progl. fpp prog2.fpp

The - EP option can be used in combination with - E or - P. It directs the preprocessor to not
include #| 1 ne directives in the output. Specifying - EP alone is the same as specifying - E and

- EP.
& Caution

When you use the - P option, any existing files with the same name and extension are not
overwritten and the system returns the error message invalid preprocessor output file.

97

Searching for Include Files

Include files are brought into the program with the #i ncl ude preprocessor directive or the
I NCLUDE statement. To locate such included files, the compiler searches by default for the
standard include files in the directories specified in the | NCLUDE environment variable. In
addition, you can specify the compiler options, - | and - X.

Specifying and Removing Include Directory Search: -1, - X

You can use the - | option to indicate the location of include files. To prevent the compiler from
searching the default path specified by the | NCLUDE environment variable, use - X option.

You can specify these options in the configuration files, i f ¢. cf g for IA-32 or ef c. cf g for
Itanium(TM)-based applications or in command line.

Specifying an Include Directory, - |

Included files are brought into the program V\{ith a#i ncl ude preprocessor directive or a
Fortran | NCLUDE statement. Use the - | di r option to specify an alternative directory to
search for include files.

Files included by the Fortran | NCLUDE statement are normally referenced in the same directory
as the file being compiled. The - | option may be used more than once to extend the search for
an | NCLUDE file into other directories.

Directories are searched for include files in this order:

= directory of the source file that contains the include

= directories specified by the - | option

= current working directory

= directories specified with the | NCLUDE environment variable

Removing Include Directories, -X

Use the - X option to prevent the compiler from searching the default path specified by the
I NCLUDE environment variable.

You can use the - X option with the - | option to prevent the compiler from searching the default
path for include files and_ direct it to use an alternate path. For example, to direct the compiler to
search the path/ al t /i ncl ude instead of the default path, do the following:

IA-32 applications:
pronmpt>ifc -X -1/alt/include newrain. f
Itanium(TM)-based applications:

pronpt>efc -X -1/alt/include newrain. f

Defining Macros, - D, -Uand - A

You can use the - D option to define the assertion and macro names to be used during
preprocessing. The - U option directs the preprocessor to suppress an automatic definition of a
macro.

Use the - D option to define a macro. This option performs the same function as the #def i ne
preprocessor directive. The format of this option is - Dnanme[=val ue({#| t ext})] where

98

name The name of the macro to define.

val ue[={ # Indicates a value to be substituted for
name.

| text}]

If you do not enter a val ue, name is setto 1. The val ue should be in quotation marks if it
contains non-alphanumerics.

Preprocessing replaces every occurrence of Nnane with the specified val ue. For example, to
define a macro called S| ZE with the val ue100 use the following command:

IA-32 applications:

pronpt >i fc -DSI ZE=100 progl. f
Iltanium(TM)-based applications:
pronpt >ef ¢ - DSI ZE=100 progl. f

Preprocessing replaces all occurrences of Sl ZE with the specified value before passing the
preprocessed source code to the compiler. Suppose the program contains the declaration:

REAL VECTOR(S| ZE)

In the code sent to the compiler, the value 100 replaces S| ZE in this declaration, and in every
other occurrence of the name S| ZE.

Use the - Unane option to suppress any macro definition currently in effect for the specified
name. The - U option performs the same function as an #undef preprocessor directive.

To remove all of the predefined macros, use the - A option. Note that the - A- option issues a
warning if OpenMP function does not work correctly.

Predefined Macros

The predefined macros available for the Intel® Fortran Compiler are described in the table below.
The Default column describes whether the macro is enabled (ON) or disabled (OFF) by default.
The Disable column lists the option which disables the macro.

Macro Name |Default Disable Description - When Used
IA-32 and Itanium compilers
_ ON,Nn=600 Defined based on the processor option

_M_I'X86=n ~u you specify:
N=500 if you specify - t pp5
N=600 if you specify - t pp6
N=700 if you specify - t pp7

IA-32

_ linux__ ON u Defined for Linux applications

| EC ON no Identifies the Intel Fortran Compiler
Itanium compiler
: ON Defined for Itanium-based Linux

_M1A64_lin _u applications

ux

__EFC ON no Identifies the Intel Fortran Compiler

99

Compiling

Compilation Overview

This section describes all the Intel® Fortran Compiler options that determine the compilation and
linking process and their output. By default, the compiler converts source code directly to an
executable file. Appropriate options enable you to control the process and obtain desired output
file produced by the compiler.

Having control of the compilation process means, for example, that you can create a file at any of
the compilation phases such as assembly, object, or executable with - P or - C options. Or you
can name the output file or designate a set of options that are passed to the linker with the - S,

- O options. If you specify a phase-limiting option, the compiler produces a separate output file
representing the output of the last phase that completes for each primary input file.

You can use the command line options to display and check for certain aspects of the compiler's
behavior. You can use these options to see which options and files are passed by the compiler
driver to the component executables f 90comand | d(1) (option - SOX[-]).

Linking is the last phase in the compilation process discussed in a separate section. See the
Linking options.

A group of options monitors the outcome of Intel compiler-generated code without interfering with
the way your program runs. These options control some computation aspects, such as allocating
the stack memory, setting or modifying variable settings, and defining the use of some registers.

The options in this section provide you with the following capabilities:

= GCC* compatibility

= controlling compilation

= monitoring data settings

= gspecifying the output files or directories

Finally, the output options are summarized in Compiler Output Options Summary.

Compilation Options

Controlling Compilation
You can control and modify the compilation process with the option sets as follows.

Controlling Compilation Phases

You can control which compilation phases you need to include in the compilation process.

= The - C option directs the compiler to compile, assemble and generate object file(s), but do
not link.

= The - S option stops compiler at generating assembly files.

= If you need to link a_dditional files and/or libraries, you use the - | name option. For example,
if you want to link | i bm a, the command is:

IA-32 compiler:
pronmpt>ifc a.f -Im
Itanium™ compiler:

pronpt>efc a.f -Im

100

Aliasing

The following options enable or disable compiler aliasing capability:

« -falias enables aliasing within a program
« -fno-alias disables aliasing within a program
» -ffnalias enables aliasing across funcrions

» -fno-fnalias disables aliasing across funcrions, but enables aliasing across calls

Translating Other Code to Fortran

With the - Tf f i | e option, you can compile some other than Fortran code file as Fortran
(translate to Fortran).

For example:
pronmpt>ifc -Tfa.c b.f

The above command will compile both a. ¢ and b. f files as Fortran, link them, and create
executable a.

Saving Compiler Version and Options Information, - sox

You save the compiler version and options information in the executable with - SOX. The - SOX
option is enabled by default, which forces the compiler to embed in each object file a string that
contains information on the compiler version and compilation options for each source file that has
been compiled.

When you link the object files into an executable file, the linker places each of the information
strings into the header of the executable. It is then possible to use a tool, such as a strings utility,
to determine what options were used to build the executable file.

The size of the executable on disk is increased slightly by the inclusion of these information
strings. If this is a concern, you can specify - SOX- to disable this feature.

Note that for Itanium(TM)-based applications, the - SOX option is accepted for compatibility, but it
does not have any effect.

Monitoring Data Settings

The options described below provide monitoring the outcome of Intel compiler-generated code
without interfering with the way your program runs.

Specifying Structure Tag Alignments

Use the - Zp{ n} option to determine the alignment constraint for structure declarations, on N-
byte boundary (N =1, 2, 4, 8, 16). Generally, smaller constraints result in smaller data sections
while larger constraints support faster execution.

For example, to specify 2 bytes as the alignment constraint for all structures and unions in the file
progl. f, use the following command:

IA-32 systems: pronpt >i fc -Zp2 progl. f

The default for IA-32 systems is - Zp4.

Itanium(TM)-based systems: pronpt >ef ¢ -Zp2 progl. f

The default for Itanium-based systems is - Zp8.

The - Zp16 option enables you to align Fortran structures such as common blocks. For Fortran
structures, see STRUCTURE statement in Chapter 10 of Intel® Fortran Programmer's Language
Reference Manual.

The - al 1 gn option applies mainly to structures and analyzes and reorders memory layout for
variables and arrays and basically functions as - Zp{ n} . You can disable either option with
-noal i gn.

101

The - pad option is effectively not different from - al i gn when applied to structures and
derived types. However, the scope of - pad is greater because it applies also to common blocks,
derived types, sequence types, and Vax structures.

Allocation of Zero-initialized Variables, - nobss_init

By default, variables explicitly initialized with zeros are placed in the BSS section. But using the
-nobss_i ni t option, you can place any variables that are explicitly initialized with zeros in
the DATA section if required.

Monitoring Data for IA-32 Systems

Correcting Computations for IA-32 Processors, - 0Of _check

Specify the - Of _check option to avoid the incorrect decoding of the instructions, which have
2-byte opcodes with the first byte containing Of . In rare cases, the Pentium® processor can
decode these instructions incorrectly.

The ebp Register Usage

The - f p option disables the use of the ebp register in optimizations. The option directs to use
the ebp-based stack frame for all functions. For details on the correlation between the ebp
register use for optimizations and debugging, see Debugging and Optimizations. The - f p option
is disabled by default or when - Ol or - O2 (see optimization-level options) are specified.

Monitoring Data for Itanium(TM)-based Systems

Flushing to Zero Denormal Values, -ftz

Option - f t z flushes denormal results to zero when the application is in the gradual underflow
mode. Use this option if the denormal values are not critical to application behavior.

Flushing the denormal values to zero with - f t Z may improve performance of your application.
The default status of - f t Z is OFF. By default, the compiler lets results to gradually underflow.

Little-endian-to-Big-endian Conversion (IA-32)

The little-endian-to-big-endian conversion feature is intended for Fortran unformatted input/output
operations. It enables the development and processing of the files with big-endian data
organization on the 1A-32-based processors, which usually process the data in the little endian
format.

The feature also enables processing of the files developed on processors that accept big-endian
data format and producing the files for such processors on 1A-32-based little-endian systems.

The little-endian-to-big-endian conversion is accomplished by the following operations:
= The WRI TE operation converts little endian format to big endian format.
= The READ operation converts big endian format to little endian format.

The feature enables the conversion of base data types and arrays (or array subscripts) of basic
data types. Derived data types are not supported.

Little-to-Big Endian Conversion Environment Variable

In order to use the little-endian-to-big-endian conversion feature, specify the numbers of the units
to be used for conversion purposes by setting the F_ UFMI'ENDI AN environment variable.
Then, the READMWRI TE statements, which use these unit numbers, will perform relevant
conversions. Other READIV\RI TE statements will work in the usual way.

In general case, the variable consists of two parts divided by semicolon. No spaces
are allowed inside the F_ UFMTENDI AN value. The variable has the following syntax:

F_UFMTENDI AN=MODE | [MODE;] EXCEPTI ON

102

where:

MDE = big | little

EXCEPTION = big: ULIST | little:ULIST | ULIST
ULIST = U| ULIST,U

U = deci mal | deci mal - deci mal

= MODE defines current format of data, represented in the files; it can be omitted. The keyword
| i tt] e means that the data have little endian format and will not be converted. For IA-32
systems, this keyword is a default. The keyword bi g means that the data have big endian
format and will be converted. This keyword may be omitted together with the colon.

= EXCEPTI ONis intended to define the list of exclusions for MODE; it can be omitted.
EXCEPTI ONkeyword (I i tt | e or bi g) defines data format in the files that are
connected to the units from the EXCEPTI ON list. This value overrides MODE value for the
units listed.

= Each list member Uis a simple unit number or diapason of units. Number of list members is
limited by 64. deci mal is a non-negative decimal number less than 2%,

Converted data should have base data types, or arrays of basic data types. Derived
data types are disabled.
Command lines for variable setting with different shells:

» Sh: export F_UFMIENDI AN=MCDE; EXCEPTI ON

= Csh: setenv F_UFMIENDI AN MODE; EXCEPTI ON
F) Note

Environment variable value should be enclosed in quotes if semicolon is present.

Another Possible Environment Variable Setting
The environment variable can also have the following syntax:

F_UFMTENDI AN=u[, U]

Command lines for variable setting with different shells:

= Sh: export F_UFMIENDI AN=u[, u]

» Csh: setenv F_UFMIENDI AN u[, u]

See error messages that may be issued during the little endian — big endian conversion. They are
all fatal. You should contact Intel if such errors occur.

Usage Examples
1. F_UFMTENDI AN=bi g

All input/output operations perform conversion from big-endian to little-endian on READ and from
little-endian to big-endian on VARl TE.

2.F_UFMTENDI AN="1ittle; big :10, 20"
or F_UFMTENDI AN=bi g : 10, 20
or F_UFMIENDI AN=10, 20

103

In this case, only on unit numbers 10 and 20 the input/output operations perform big-little endian

conversion.

3. F_UFMTENDI AN="bi g; littl e: 8"

In this case, on unit number 8 no conversion operation occurs. On all other units, the input/output

operations perform big-little endian conversion.

4. F_UFMIENDI AN=10- 20

Define 10, 11, 12 ... 19, 20 units for conversion purposes; on these units, the input/output

operations perform big-little endian conversion.

5. Assume you set F_ UFMTIENDI AN=10, 100 and run the following program.

i nt eger*4 cc4
i nt eger*8 cc8
i nt eger*4 c4
i nt eger*8 c8

c4 = 456

c8 = 789

C prepare a little endian representation of
dat a

open(1l1,file="lit.tnp ,form unformatted’)
wite(ll) c8

wite(1ll) c4

cl ose(11)

C prepare a big endian representation of data
open(10,file="big.tnp’ ,form unformatted’)
wite(1l0) c8

wite(10) c4

cl ose(10)
C read bi g endian data and operate with them
C on little endi an machi ne.

open(100,file="big.tnmp’ ,form= unformatted’)
read(100) cc8
read(100) cc4

C Any operation with data, which have been read

C Co
cl ose(100)
stop

end

Now compare | i t . t mp and bi g. t np files with the help of 0d utility.
>o0d -t x4 lit.tnp

104

0000000 00000008 00000315 00000000 00000008
0000020 00000004 000001c8 00000004
0000034

> od -t x4 big.tnp

0000000 08000000 00000000 15030000 08000000
0000020 04000000 ¢8010000 04000000
0000034

You can see that the byte order is different in these files.
Specifying Compilation Output

Specifying Compilation Output Overview

When compiling and linking a set of source files, you can use the -0 or -S option to give the
resulting file a name other than that of the first source or object file on the command line.

Compile to object only (. 0), do not link.

-C

S Produce assembly file or directory for multiple assembly
files. The compilation stops at producing the assembly file.

_ofile Produce an output file based on the phase options used

previously: none, - C or - S.

If no phase option has been used, produces an executable
and places it in specified file. Combined with - S, indicates
assembly file or directory for multiple assembly files.

Combined with - C, indicates object file name or directory
for multiple object files.

If you are processing a single file, you can use the - of i | € option to specify an alternate name
for an object file (. 0), an assembly file (. S) or an executable file. You can also use these
options to override the default filename extensions: . O and . S.

See Compilation Output options summary.

Default Output Files

The default command line does not include any options and has a Fortran source file as its input
argument:

IA-32 compiler:

pronpt>ifc a.f90
Itanium compiler:
pronpt >efc a.f90

The default compiler command produces an a. out executable file. If the - C option was used,
the compiler command also produces an object file, a. 0, and places it in the current directory.

You can compile more than one input files:
IA-32 compiler:

105

pronmpt>ifc x.f90 y.f90 z.f90
Itanium compiler:
pronpt>efc x.f90 y.f90 z.f90

The above command will do the following:

= compile and link three input source files

= produce three object files and assign the names of the respective source files: X. 0, Y. O,
andz. O

= produce executable file and assign to it the default name, a. out

= place all the files in the current directory.

To generate assembly files, use the - S option. The compilation stops at producing the assembly
file.

Specifying Executable Files

You can use the - of i | e option to specify an alternate name for an executable file. This is
especially useful when compiling and linking a set of input files. You can use the - of i | e
option to give the resulting file a name other than that of the first input file (source or object) on
the command line.

In the next example, the command produces an executable file named outfile as a result of
compiling and linking two source files.

IA-32 compiler:

pronpt>ifc -ooutfile filel.f90 file2.f90
Itanium compiler:

pronpt >efc -ooutfile filel.f90 file2.f90

Without the - oout f i | e option, the command above produces an executable file named
a. out , the default iexecutable file name.

Specifying Object Files

The compiler command always generates and keeps object files of the input source files and by
default places them in the current directory. You can use the - Of i | € options to specify an
alternate name for an object file.

For example:
IA-32 compiler:

pronmpt>ifc -ofile.o x.f90
Itanium(TM) compiler:
pronpt >efc -ofile.o x.f90

In the above example, - O assigns the name f i | €. 0 to an output object file rather than the
default X. O.

To generate object files, specify a different object file anme, and suppress linking, use - C and
- 0 combination.

IA-32 applications:

pronmpt>ifc -c -ofile.o x.f90

Itanium compiler:

106

pronpt>efc -c -ofile.o x.f90
- 0 assigns the name f i | €. 0 to an output object file rather than the default (X. 0)
- C directs the compiler to suppress linking.

Specifying Assembly Files

You can use the —S option to generate an assembly file. The compilation stops at producing the
assembly file. To specify an alternate name for this assembly file, use the —0of i | e option .
IA-32 compiler:

prompt>ifc -S —ofile.s x.f90
Itanium compiler:
pronpt >efc -S -ofile.s x.f90

In the above example, - S tells the compiler to generate an assembly file, while - of i | . s
assigns to it the name f i | €. S rather than the default X. S.

The option - S tells compiler to:

= generate an assembly file of the source file

= use the name of the source file as a default assembly output file name

= place this file in the current directory.

f) Note

The - S option stops the compiler upon generating and saving the assembly files. Without
the - S option, the compiler proceeds to generating object files without saving the
assembly files.

Producing Assembly Files with Annotations and Comments

Options - f code- asmand - f sour ce- asmproduce annotations in assembly files as
follows:

» - fcode- asmand inserts code byte information in the assembly file
= - fsour ce-asmand inserts high-level source code in the assembly file

In addition, the options - f ver bose- asmand - f nover bose- asmenable and disable,
respectively, inserting comments containing compiler version and options used in the assembly
file.

Compiler Output Options Summary

If no errors occur during processing, you can use the output files from a particular phase as input
to a later compiler invocation. The executable file is produced when you do not specify any
phase-limiting option. The filename of the first source or object file specified with an absent suffix,
is the default for the executable object file from the linker.

The table below describes the options to control the output.

Last Phase [Option Compiler Compiler Output
Completed Input
preprocessing |- P, - E, or source files preprocessed files, see Preprocessing
- Ep
compile only | c source Compile to object only (. 0), do not link.
assembly only |-S source Compile to assembly file only (. S) and
stop.

107

compilation, source, Assigns a name of your choice to an
linking, or - 0, hane assembly, or output file
assembly object files
syntax) source files diagnostic list
checking y preprocessed
files
source files
linking (default)]E?Ireprocessed executable file, map file
iles
assembly files
object files
libraries

Using the Assembler to Produce Object Code

By default the compiler generates an object file directly without going through the
assembler. But if you want to link some specific input file to the Fortran project
object file, you can use the -use_asm option to tell the compiler to use the Linux
Assembler for IA-32 systems or Itanium(TM) Assembler for Itanium-based systems.

pronpt>ifc -use asmfilel.f

pronpt >efc -use_asmfilel.f

The above command generates an filel.o object file which you can link with the Fortran
object file(s) of the whole project.
See Assembly File Code Example.

Assembly File Code Example

The following is an example of a portion of an assembly file code for IA-32:

mai n:

. B1. 1:

/1

/| Preds .Bl1.0

| AFL

pushl %ebp /1.0 10
novl Y%esp, %ebp /1.0 10
subl $3, %esp /1.0 10
and| $-8, %esp /1.0 10
add| $4, %esp /1.0 10
subl $12, %esp /1.0 10
novl 12(%bp), %edx /1.0 2 0
| eal 8(%bp), %Y%eax /1.0 4 0
novl Y%eax, (%esp) /1.0 4 0
novl Y%edx, 4(%esp) /1.0 50
cal | f90 init /1.0 6 0
/| LOE ebx esi edi

The elements in the above code are as follows:

= . Bl. 1:identifies the beginning of the first basic block in the first function of the file. A basic
block is a set of instructions with the property that if the first instruction is executed then all of

the subsequent instructions in the set are also executed.

108

= /1 following the basic block label is the block execution count. This count is only printed
when the - pr of _use option is used. It indicates the average number of times a block was
executed when the instrumented program was run. See_Profile-Guided Optimization for more
informationon - pr of _use.

» /[Preds isalist of predecessors of the current basic block. Predecessors are blocks that
can transfer control to the current basic block.

* The numbers (1. 0) following the slash (/) at the end of each instruction indicate the source
line number and column corresponding to that assembly language instruction.

» /[LOE indicates a list of registers which are live on exit from the current basic block. These
are registers that contain values to be used by succeeding basic blocks.

Iltanium(TM)-based applications:

An assembly file code portion:

.section .text

/1l -- Begin main

.proc rmai n#

.align 32

/1l Block 0: entry Pred: Succ: 3

/'l Freq 1.0e+000, Prob 1.00, Ipc 2.67

. gl obal nmai n#

.align 32

mai n:

{ . nm

al | oc r34=ar.pfs,2,2,2,0 /10 1

add sp=- 64, sp /10 1

nop. i 0 ;;

P{o.omi

| d8 r 30=[sp] /11 1

nov r 35=b0 /11: 1 M5
add r36=$2%1 2pab p$0# + 2%$1 2auto_si ze -
0x00000030, sp

/11 1 MS

RE

yo{ .

nov r37=r33 ;; /11 1 M5
st8 [r36] =r32 /12 1 B3 DS
nov r32=gp /12 1 B3 DS
/1 Block 3: Pred: O Succ: 1

/'l Freq 1.0e+000, Prob 1.00, Ipc 1.00

}{ .mb

nop.m O

nop. i 0

br. cal |l . sptk. many bO=f90_init# ;; /12: 1 MS

The elements in the above code are as follows:
= : Prob 1. 00 indicates the probability assigned to a jump.

= Each curly brace pair { } indicates an instruction bundle. A bundle is a group of up to three
instructions that may execute simultaneously if there are no stalls or dependencies.

= main is a label that starts the program

» // indicate comments

= [] indicate indirect addressing

For more information, see Intel® Itanium™ Assembler User’'s Guide.

109

Listing Options

The following options produce messages to the standard output, which by default is the screen.

= The - D option writes a listing of the source file to standard output, including any error or
warning messages. The errors and warnings are also output to standard error, St derr .

= The - Gl option prints a listing of the source file to the standard output without | NCL UDE
files expanded.

Linking

This topic describes the options that enable you to control and customize the linking with tools
and libraries and define the output of the linking process. See the summary of linking options.

f) Note

These options are specified at compile time and have effect at the linking time.

Options to Link to Tools and Libraries

The following options enable you to link to various tools and libraries:

) . Dynamically links libraries at run time. Compared to static
Bdynami ¢ linking, results in smaller executables.
- 090 Link with alternate 1I-O library for mixed output with the C
language.
. . Enables to link the shared object versions of the Intel-
-1 _dynami ¢ provided libraries dynamically.
_| nane Link with a library indicated in name. For example, - | m
indicates to link with the math library.
Ldir Instructs linker to search di r for libraries.
_posixlib Enable or disable linking with POSIX library.
_shar ed Instructs the compiler to build the Dynamic Shared Object
(DSO) instead of an executable.
_static Enables to link shared libraries (. S0O) statically.
“Vaxlib Enable or disable linking with portability library.

Controlling Linking and its Output

_Ldir [Mmstructlinker to search for di r libraries.

See Libraries for more information on using them.
Suppressing Linking

Use the - C option to suppress linking. Entering the following command produces the object files
flecoand fi | €2. 0, but does not link these files to produce an executable file.
IA-32 compiler:

110

prompt>ifc -c file.f file2.f
Itanium(TM) compiler:
pronpt>efc -c file.f file2.f

f)Note

The preceding command does not link these files to produce an executable file.
Debugging

Debugging Options Overview

This section describes the basic command line options that you can use as tools to debug your
compilation and to display and check compilation errors. The options in this section enable you
to:

= check the source files for syntax errors before creating output file
= support symbolic debugging
= compile only designated lines and debug statements

Preparing for Debugging

Use the - g option to direct the compiler to generate code to support symbolic debugging.
For example:
IA-32 applications: pronpt >i fc -g progl. f

Itanium(TM)-based applications: pr onpt >efc -g progl. f

Debugging and Assembling

The compiler supports the generation of debugging information in assembly files. If you specify
the - g option with - S, the assembly file will contain the debugging ionformation. If you further
produce an object file, the resulting object file will contain debugging information. If you link the
object file and then use the GDB debugger on it, you will get full symbolic representation.

Support for Symbolic Debugging

The compiler lets you generate code to support symbolic debugging while the - O1,
or - O2 optimization options are specified on the command line along with - g.

If you specify the - OL, or - O2 options with the - g option, you can receive these
results:

= some of the debugging information returned may be inaccurate as a side-effect of
optimization.

= for IA-32 applications, - OL, or - O2 options disable the -fp option. See - f p Option and
Debugging.

Parsing for Syntax Only

Use the - Yy or - Synt ax option to stop processing source files after they have been parsed for
Fortran language errors. This option gives you a way to check quickly whether sources are
syntactically and semantically correct. The compiler creates no output file. In the following

111

example, the compiler checks a file named progl.f. Any diagnostics appear on the standard error
output and in a listing, if you have requested one.

IA-32 applications:
pronmpt>ifc -y progl.f
Iltanium(TM)-based applications:

pronpt>efc -y progl.f

Compiling Source Lines with Debugging
Statements, - DD

Use the - DD option to compile source lines containing user debugging statements. Debugging
statements included in a program are indicated by the letter Din column 1. By default, the
compiler takes no action on these statements. For example, to compile any debugging
statements in program pr ogl. f, enter the following command:

pronpt>i fc -DD progl. f
The above command causes the debugging statement
D PRINT *, "I=",I

embedded in the pr ogl. f to execute and print lines designated for debugging.

Debugging and Optimizations

It is best to make your optimization and/or debugging choices explicit:

= |f you need to debug your program excluding any optimization effect, use the - Q0 option,
which turns off all the optimizations.

= |If you need to debug while still use optimizations, you can specify the - Ol or - O2 options
on the command line along with - g.

If you do not make your optimization choice explicit when - g is specified, the - g
option implicitly disables optimization (as if - Q0 was specified).

-fp Option and Debugging (IA-32 only)

The - f p option disables use of the ebp register in optimizations, and can result
in slightly less efficient code. With this option, the compiler generates code for
IA-32-targeted compilations without turning off optimization, so that a debugger
can still produce a stack backtrace.

If you specify the - OL or - O2 options, the - f p option is disabled. If you specify
the - Q0 option, - f p is enabled. Remember that the - f p option affects 1A-32 applications
only.

Summary

Refer to the table below for the summary of the effects of using the - g option with
the optimization options.

112

These options

Imply these results

-9

debugging information produced, - Q0 enabled, - f p
enabled for I1A-32-targeted compilations.

debugging information produced, - Ol optimizations

-g -al enabled, - f p disabled for IA-32-targeted compilations
g - debugging information produced, - O2 optimizations
enabled, - f p disabled for IA-32-targeted compilations
_g -8 -fp debugging information produced, - O3 optimizations
enabled, - f p enabled for IA-32-targeted
compilations
g -ip limited debugging information produced, - I P option

enabled.

113

Fortran Language Conformance
Options

Fortran Language Options Overview

The Intel® Fortran Compiler implements Fortran language-specific options, which enable you to
set or specify:

= set data types and sizes

= define source program characteristics

= set arguments and variables

= allocate common blocks

For the size or number of Fortran entities the Intel® Fortran Compiler can process, see Maximum
Size and Number table.

Setting Integer and Floating-point
Data Types

See the summary of these options.

Integer Data

The-12,-14,and- i 8 options specify that all quantities of | NTEGER type and unspecified
Kl ND occupy two, four or eight bytes, respectively. All quantities of LOGE CAL type and
unspecified KI ND also occupy two, four or eight bytes, respectively.

All logical constants and all small integer constants occupy two, four or eight bytes, respectively.
The default is four bytes, - | 4.

Floating-point Data

TThe - r { 4| 8| 16} option defines the KI ND for real variables in 4, 8, and 16 bytes. The
defaultis -r 4.

The - r 8, - aut odoubl e, and - r 16 options specify floating-point data.

The - r 8 option directs the compiler to treat all variables, constants, functions and intrinsics as
DOUBLE PRECI SI QN and all complex quantities as DOUBLE COMPLEX. The
- aut odoubl e option has the same effect as the - r 8 option.

The - r 16 option directs the compiler to treat all variables, constants, functions and intrinsics as
DOUBLE PRECI SI QN, and all complex quantities as DOUBLE COMPLEX. This option
changes the default size of real numbers to 16 bytes.

Source Program Features

The options that enable the compiler to process a source program in a beneficial way for or
required by the application, can be divided in two groups described in the two sections below.
See a summary of these options.

114

Program Structure and Format

DOloops

The - onet r i p option directs the compiler to compile DO loops at least once. By default
Fortran DOloops are not performed at all if the upper limit is smaller than the lower limit. The
option - 1 has the same effect. This supports old programs from the Fortran—66 standard, when
all DOloops executed at least once.

Fixed Format Source

The- Fl option specifies that all the source code is in fixed format; this is the default except for
files ending with the extension . f,. f or, . ftn.

- 132 permits fixed form source lines to contain up to 132 characters.

The - ext end_sour ce option has the same effect as - 132.

Free Format Source

- FR options Specifies that all the source code is in Fortran free format; this is the default for files
ending with the suffix . f 90.

Character Definitions

The - pad_sour ce option enforces the acknowledgment of blanks at the end of a line.

The - US option appends an underscore to external subroutine names. - NUS disables
appending an underscore to an external subroutine name.

The - nus[fi | e] option directs to not append an underscore to subroutine names listed in

f il e. Useful when linking with C routines.

The - nbs option directs the compiler to treat backslash (\) as a normal graphic character, not
an escape character. This may be necessary when transferring programs from non-UNIX
environments, for example from VAX-VMS. See Escape Characters.

Compatibility with Platforms and Compilers

This group discusses options that enable compatibility with other compilers.

Cross-platform

The - ansi [-] enables (default) or disables assumption of the program’s ANSI conformance.
Provides cross-platform compatibility. This option is used to make assumptions about out-of-
bound array references and pointer references.

DEC*, VMS

The - dps, option enables (default) or disables DEC* parameter statement recognition.
Basically, the - dpS option determines how the compiler treats the alternate syntax for

PARANETER statements, which is:
PARAVETER par 1=expl [, par2=exp2]

This form does not have parentheses around the assignment of the constant to the parameter

name. With this form, the type of the parameter is determined by the type of the expression being

assigned to it and not by any implicit typing.

By default, the compiler allows the alternate syntax for PARANMETER statements, - dps. To

disable this form, specify - nodps.

The - VITB option enables support for extensions to Fortran that were introduced by Digital VMS

Fortran compilers. The extensions are as follows:

= The compiler permits shortened, apostrophe-separated syntax for parameters in /O
statements. For example, a statement of the form: WRI TE(4’ 7) FQOis permitted and is
equivalent to WRI TE(UNI T=4, REC= 7) FQO

= The compiler assumes that the value specified for RECL in an OPEN statement is given in
words rather than bytes. This option also implies - dps, though - dps is on by default.

115

C Language
The - | ower case maps external routine names and symbol names (linker) to lowercase
alphabetic characters. This option is useful when mixing Fortran with C programs.

The - Upper case maps external names to uppercase alphabetic characters.

ENote

Do not use the - Upper case option in combination with - Vax| i b or - posi xI i b.

Escape Characters

For compatibility with C usage, the backslash (\) is normally used in Intel® Fortran Compiler as
an escape character. It denotes that the following character in the string has a significance which
is not normally associated with the character. The effect is to ignore the backslash character, and
either substitute an alternative value for the following character or to interpret the character as a
quoted value.

The escape characters recognized, and their effects, are described in the table below. Thus,

I SN\" T' is avalid string. The backslash (\) is not counted in the length of the string.

Escape Characters and Their Effect

Escape Effect

Character

\n new line

\ t horizontal tab

\ v vertical tab

\ b backspace

\ f form feed

\ 0 null

\’ apostrophe (does not terminate a
string)

\ " double quote (does not terminate a
string)

\\ \ (a single backslash)

\ x X, where X is any other character

Line Terminators

This information is useful for recent Linux users after working with Windows. The line terminators
are different between Linux and Windows. On Windows, line terminators are \ r \ n while on
Linux they are just \ n. Typically, a file transfer program will take care of this issue for you if you
transfer the file in text mode. If the file is transferred in binary mode (but the file is really text file),
the problem will not be resolved by FTP.

116

Setting Arguments and Variables

These options can be divided into two major groups discussed below. See a summary of these
options.

Automatic Allocation of Variables to Stacks

-auto

This option makes all local variables AUTOVATI C. Causes all variables to be allocated on the
stack, rather than in local static storage. Variables defined in a procedure are otherwise allocated
to the stack only if they appear in an AUTOVATI C statement, or if the procedure is recursive
and the variables do not have the SAVE or ALL OCATABLE attributes. The option does not
affect variables that appear in an EQUI VALENCE or SAVE statement, or those that are in
COVMON. May provide a performance gain for your program, but if your program depends on
variables having the same value as the last time the routine was invoked, your program may hot
function properly.

-aut o_scal ar

This option causes scalar variables of rank 0, except for variables of the COVPLEX or
CHARACTER types, to be allocated on the stack, rather than in local static storage. Does not
affect variables that appear in an EQUI VALENCE or SAVE statement, or those that are in
COVMON. - aut o_scal ar may provide a performance gain for your program, but if your
program depends on variables having the same value as the last time the routine was invoked,
your program may not function properly. Variables that need to retain their values across
subroutine calls should appear in a SAVE statement. This option is similar to
- aut o, which causes all local variables to be allocated on the stack. The difference is that
-aut o_scal ar, allocates only variables of rank 0 on the stack.

-aut o_scal ar enables the compiler to make better choices about which variables should
be kept in registers during program execution. This option is on by default.

-saveand-zero

Forces the allocation of all variables in static storage. If a routine is invoked more than once, this
option forces the local variables to retain their values from the last invocation terminated. This
may cause a performance degradation and may change the output of your program for floating-
point values as it forces operations to be carried out in memory rather than in registers which in
turn causes more frequent rounding of your results.The default (with - O2 ON) corresponds to
-aut o_scal ar - . Opposite of - aut 0. To disable - save, set - aut 0.

The - Zer O option presets uninitialized variables to zero. It is most commonly used in
conjunction with - save.

Alignment, Aliases, Implicit None

Alignment
The - al 1 gn option is a front-end option that changes alignment of variables in a COMMON
block.

Example:
COVMON / BLOCK1/ CH, DOUB, CH1, | NT
| NTEGER | NT

CHARACTER(LEN=1) CH, CH1
DOUBLE PRECI SI ON DOUB
END

117

The - al 1 gn option enables padding inserted to assure alignment of DOUBLE PRECI SI ON
and | NTEGER on natural alignment boundaries. The - noal i gn option disables padding.
Aliases

The - commDn_ar gs option assumes that the "by-reference" subprogram arguments may
have aliases of one another.

Implicit None
The - u and-i npl i ci t none options enable the default | MPLI CI T NONE.

Allocating Common Blocks

The following two options are used for the common blocks:

) : Dynamically allocates COMMON blocks at
ijncom bl k1, bl k2 runtime. See section Dynamic Common
T Option that follows.

: Enables local allocation of given COVIVON
Q Pccom bl k1, bl k2, blocks at run time. See Allocating Memory to
T Dynamic COVMON Blocks.

Dynamic Common Option

The - Qdyncomoption dynamically allocates COVIMON blocks at runtime. This option on the
compiler command line designates a COVMMON block to be dynamic, and the space for its data is
allocated at runtime, rather than compile time. On entry to each routine containing a declaration
of the dynamic COVMMON block, a check is made of whether space for the COMMON block has
been allocated. If the dynamic COMMON block is not yet allocated, space is allocated at the
check time.

The following example of a command-line specifies the dynamic common option with the names
of the COVMON blocks to be allocated dynamically at runtime:

IA-32 applications:

pronpt >i f ¢ - Qdynconi BLK1, BLK2, BLK3" test.f

Itanium-based applications:

pronpt >ef ¢ - dynconi BLK1, BLK2, BLK3" test.f

where BLK1, BLK2, and BLK3 are the names of the COMMON blocks to be made dynamic.

Allocating Memory to Dynamic Common Blocks

The runtime library routine, f 90 _dyncom performs memory allocation. The compiler calls this
routine at the beginning of each routine in a program that contains a dynamic COMMON block. In
turn, this library routine calls _FTN _ALLOC() to allocate memory. By default, the compiler
passes the size in bytes of the COVMON block as declared in each routine to f 90 _dyncom
and thenonto FTN_ALLQOC() . If you use the nonstandard extension having the COVVON
block of the same name declared with different sizes in different routines, you may get a runtime
error depending upon the order in which the routines containing the COVMMON block declarations
are invoked.

The runtime library contains a default version of _FTN_ALLOC() , which simply allocates the
requested number of bytes and returns.

118

Why Use a Dynamic Common

One of the primary reasons for using dynamic COMMON is to enable you to control the COVIVON
block allocation by supplying your own allocation routine. To use your own allocation routine, you
should link it ahead of the runtime library routine. This routine must be written in the C language
to generate the correct routine name.

The routine prototype is as follows:
void FTN ALLOC(void *mem int *size, char *nane);

where

is the location of the base pointer of the COVMON block which
must be set by the routine to point to the block memory allocated.

is the integer number of bytes of memory that the compiler has
determined are necessary to allocate for the COMMON block as it
was declared in the program. You can ignore this value and use
whatever value is necessary for your purpose.

ENote

You must return the size in bytes of the space you allocate. The
library routine that calls _FTN _ALLOC() ensures that all
other occurrences of this common block fit in the space you
allocated. Return the size in bytes of the space you allocate by
modifying the size parameter.

is the name of the routine to be generated.

mem

si ze

namne

Rules of Using Dynamic Common Option

The following are some limitations that you should be aware of when using the dynamic common

option:

= If you use the technique of implementing your own allocation routine, then you should specify
only one dynamic COMMON block on the command line. Otherwise, you may not know the
name of the COMMON block for which you are allocating storage.

= An entity in a dynamic COMMON may not be initialized in a DATA statement.

= Only named COMMON blocks may be designated as dynamic COVIVION.

= An entity in a dynamic COMMON must not be used in an EQUI VAL ENCE expression with
an entity in a static COMMON or a DAT A-initialized variable.

119

Optimizations

Optimization Levels

Optimization Levels Overview

Each of the command-line options: - O- O1, - O2 and - OB turn on several compiler capabilities.
- Oand - Ol are practically the same and mentioned both for compatibility with other compilers.
See the summary of these options.
The following table summarizes the optimizations that the compiler applies when you invoke - Ol
and/or - O2, or - OB optimizations.

Option Optimization Affected Aspect of Program
ol - global register allocation register use
ol - instruction scheduling instruction reordering
ol - register variable detection register use
ol - common subexpression elimination|constants and expression evaluation
ol - dead-code elimination instruction sequencing
ol - variable renaming register use
ol - copy propagation register use
ol - constant propagation constants and expression evaluation
ol - strength reduction-induction simplification instruction,
’ variable selection-sequencing
ol - tail recursion elimination calls, further optimization
ol - software pipelining; calls, further optimization; for Itanium-based
’ applications, - Ol turns off software
pipelining to reduce the code size
e prefetching, scalar replacement, |memory access, instruction parallelism,
loop transformations predication, software pipelining

Setting Optimization Levels

For 1A-32 and Itanium(TM) architectures, the options can behave in a different way. To specify
the optimizations for your program, use options depending on the target architecture as explained
in the tables that follow.

120

Itanium Compiler

Option Effect

-0l Optimizes to favor code size. Enables the same optimizations as
- Oexcept for loop unrolling and software pipelining. At - Ol the
global code scheduler is tuned to favor code size. - Oand - O2
turn the software pipelining ON. Generally, - Oor - O2 are
recommended over - OL.

IA-32 Compiler

Option Effect
Optimize to favor code speed. Disable option - f p. The - O2

-0 -01, - oo . SRR
option is ON by default. Inlines intrinsics.

_ B Enables - O2 option with more aggressive optimization.

Optimizes for maximum speed, but does not guarantee higher
performance unless loop and memory access transformation
take place. In conjunction with - ax K and - XK options, this
option causes the compiler to perform more aggressive data
dependency analysis than for - O2. This may result in longer
compilation times.

IA-32 and Itanium Compilers

For 1A-32 and Itanium architectures, the options can behave in a different way. To specify the
optimizations for your program, use options depending on the target architecture as follows.

Option Effect
ez ON by default. - O2 turns ON intrinsics inlining. Enables the
following capabilities for performance gain:
= constant propagation
= copy propagation
» dead-code elimination
= global register allocation
= global instruction scheduling and control speculation
= |oop unrolling
= optimized code selection
= partial redundancy elimination
= strength reduction/induction variable simplification
= variable renaming
= predication
= software pipelining
_ B Enables - O2 option with more aggressive optimization.

Optimizes for maximum speed, but may not improve
performance for some programs.

121

Restricting Optimizations

The following options restrict or preclude the compiler’s ability to optimize your program:
-0 Disables optimizations - OL, - O2, and-or

- (3. Enables - f p option.

Restricts optimizations that cause some
-p minor loss or gain of precision in floating-
point arithmetic to maintain a declared level
of precision and to ensure that floating-point
arithmetic more nearly conforms to the ANSI
and |IEEE standards. See - N option for
more details.

Disables inline expansion of intrinsic
functions.

For more information on ways to restrict optimization, see Interprocedural Optimizations with -
Qoption.

Floating-point Arithmetic
Optimizations
Floating-point Arithmetic Precision Overview

The options described in this section all provide optimizations with varying degrees of precision in
floating-point (FP) arithmetic for IA-32 and Itanium(TM) compiler. See the FP arithmetic precision
options summary.

The - np, - Mp1, and - doubl et enps options are used by both architectures. Use the

- doubl et enps option to ensure that all intermediate results of floating-point expressions
are maintained in at least double precision, both for IA-32 and Itanium-based applications.

The FP options provide optimizations with varying degrees of precision in floating-point
arithmetic. The option that disables these optimizations is - Q0.

-nolib_inline

- np Option

Use - NP to limit floating-point optimizations and maintain declared precision. For example, the
Intel® Fortran Compiler can change floating-point division computations into multiplication by the
reciprocal of the denominator. This change can alter the results of floating point division
computations slightly. The - Mp switch may slightly reduce execution speed. See Maintaining and
Restricting FP Arithmetic Precision for more detail.

- npl Option
Use the - NP1 option to restrict floating-point precision to be closer to declared precision with

less impact to performance than with the - NP option. The option will ensure the out-of-range
check of operands of transcendental functions and improve accuracy of floating-point compares.

Floating-point Arithmetic Precision for |IA-32
Systems
- prec_di v Option

Use - pr ec_di Vv to improve the floating point division-to-multiplication optimization. The Intel®
Fortran Compiler can change floating-point division computations into multiplication by the
reciprocal of the denominator. This change can alter the results of floating point division
computations slightly, but is faster.

122

- pc{ 32| 64| 80} Option

Use the - pc{ 32| 64| 80} option to enable floating-point significand precision control. Some
floating-point algorithms, created for specific 32- and Itanium-based systems, are sensitive to the
accuracy of the significand or fractional part of the floating-point value. Use appropriate version of
the option to round the significand to the number of bits as follows:

- pc32: 24 bits (single precision)

- pc64: 53 bits (double precision)

- pc80: 64 bits (extended precision)

The default version is - pc 64 for full floating-point precision.

This option enables full optimization. Using this option does not have the negative performance
impact of using the - NP option because only the fractional part of the floating-point value is
affected. The range of the exponent is not affected.

& Caution

A change of the default precision control or rounding mode (for example, by using the
- pc 32 option or by user intervention) may affect the results returned by some of the
mathematical functions.

Rounding Control, -rcd, -f p_port

The Intel Fortran Compiler uses the - r cd option to improve the performance of code that
requires floating point-to-integer conversions. The optimization is obtained by controlling the
change of the rounding mode.

The system default floating-point rounding mode is round-to-nearest. This means that values are
rounded during floating-point calculations. However, the Fortran language requires floating-point
values to be truncated when a conversion to an integer is involved. To do this, the compiler must
change the rounding mode to truncation before each floating-point conversion and change it back
afterwards.

The - r cd option disables the change to truncation of the rounding mode for all floating-point
calculations, including floating-point-to-integer conversions. Turning on this option can improve
performance, but floating-point conversions to integer will not conform to Fortran semantics.

You can also use the - f p_por t option to round floating-point results at assignments and
casts. This option has some speed impact.

Floating-point Arithmetic Precision for Itanium-
based Systems

The following Intel® Fortran Compiler options enable you to control the compiler optimizations for
floating-point computations on Itanium(TM)-based systems.

Contraction of FP Multiply and Add/Subtract Operations

-1 PF_f ma[-] enables or disables the contraction of floating-point multiply and add/subtract
operations into a single operations. Unless - NP is specified, the compiler tries to contract these
operations whenever possible. The - NP option disables the contractions.

-1 PF_fmaand -l PF_f ma- can be used to override the default compiler behavior. For
example, a combination of - p and - | PF_f ma enables the compiler to contract operations:

pronpt>efc -np -1 PF_fma nyprog.f

123

FP Speculation

-1 PF_f p_specul ati onnode sets the compiler to speculate on floating-point operations
in one of the following nodes:

f ast : sets the compiler to speculate on floating-point operations;

saf e: enables the compiler to speculate on floating-point operations only when it is safe;

st ri ct: enables the compiler’s speculation on floating-point operations preserving floating-
point status in all situations. In the current version, this mode disables the speculation of floating-
point operations (same as Of f).

of f : disables the speculation on floating-point operations.

FP Operations Evaluation

-1 PF_flt _eval nethod{0| 2} option directs the compiler to evaluate the expressions
involving floating-point operands in the following way:

-1 PF_flt _eval et hodO directs the compiler to evaluate the expressions involving
floating-point operands in the precision indicated by the variable types declared in the program.

-1 PF_flt _eval net hod2 is not supported in the current version.

Controlling Accuracy of the FP Results

-1 PF_fltacc[-] enables/disables the compiler to apply optimizations that affect floating-
point accuracy. By default, the compiler applies optimizations that affect floating-point accuracy.
-1 PF_fltacc- disables such optimizations. - | PF_f | t acc- is effective when - np is
on.

The Itanium compiler may reassociate floating-point expressions to improve application
performance. Use - | PF_f | t acc- or - np to disable this behavior.

Maintaining and Restricting FP Arithmetic
Precision

The - P and - NP1 options maintain and restrict, respectively, floating-point precision, but also

affect the application performance. The - NP1 option causes less impact on performance than

the - P option. - NP1 ensures the out-of-range check of operands of transcendental functions

and improve accuracy of floating-point compares.

The - NP option restricts some optimizations to maintain declared precision and to ensure that

floating-point arithmetic conforms more closely to the ANSI and IEEE standards. This option

causes more frequent stores to memory, or disallow some data from being register candidates

altogether. The Intel architecture normally maintains floating point results in registers. These

registers are 80 bits long, and maintain greater precision than a double-precision number. When

the results have to be stored to memory, rounding occurs. This can affect accuracy toward getting

more of the "expected" result, but at a cost in speed. The - pc{ 32| 64| 80} option (IA-32

only) can be used to control floating point accuracy and rounding, along with setting various

processor |IEEE flags.

For most programs, specifying this option adversely affects performance. If you are not sure

whether your application needs this option, try compiling and running your program both with and

without it to evaluate the effects on performance versus precision.

Specifying this option has the following effects on program compilation:

= OnlA-32 systems, floating-point user variables declared as floating-point types are not
assigned to registers.

= On ltanium-based systems, floating-point user variables may be assigned to registers. The
expressions are evaluated using precision of source operands. The compiler will not use

124

Floating-point Multiply and Add (FMA) function to contract multiply and add/subtract
operations in a single operation. The contractions can be enabled by using - | PF_f nma
option. The compiler will not speculate on floating-point operations that may affect the
floating-point state of the machine. See Floating-point Arithmetic Precision for Itanium-based
Systems.

= Floating-point arithmetic comparisons conform to IEEE 754.

= The exact operations specified in the code are performed. For example, division is never
changed to multiplication by the reciprocal.

= The compiler performs floating-point operations in the order specified without reassociation.

= The compiler does not perform the constant folding on floating-point values. Constant folding
also eliminates any multiplication by 1, division by 1, and addition or subtraction of 0. For
example, code that adds 0.0 to a number is executed exactly as written. Compile-time
floating-point arithmetic is not performed to ensure that floating-point exceptions are also
maintained.

For IA-32 systems, whenever an expression is spilled, it is spilled as 80 bits (EXTENDED
PRECI SI ON), not 64 bits (DOUBLE PRECI SI ON). Floating-point operations conform to
IEEE 754. When assignments to type REAL and DOUBLE PRECI SI ON are made, the
precision is rounded from 80 bits (EXTENDED) down to 32 bits (REAL) or 64 bits (DOUBLE
PRECI SI ON). When you do not specify - Q0, the extra bits of precision are not always
rounded away before the variable is reused.

= Even if vectorization is enabled by the - X K option, the compiler does not vectorize reduction
loops (loops computing the dot product) and loops with mixed precision types.

Processor Dispatch Extensions
Support (IA-32 Only)

Targeting a Processor and Extensions Support
Overview

This section describes targeting a processor and processor dispatch options, the feature for IA-32
only. The options -t pp{ 5| 6| 7} optimizes for the 1A-32 processors, and the options

-x{i | MKW and-ax{i| M K| W provide support to generate code that is specific to
processor-instruction extensions. See the summary of options supporting Targeting a Processor
and Extensions Support.

) - 1 pp5 Pentium® processor.

tpp{5| 6] 7} - 1 pp6 Pentium Pro, Pentium 11, and Pentium 11|
processors. Default.
-1 pp7 Pentium 4 and Xeon(TM) processors.
Requires the RedHat version 7.1 and support of
Streaming SIMD Extensions 2.

“x{i | MKW Generates specialized code to run exclusively on
the processors supporting the extensions indicated
by the i , M K, Wcodes.

. Generates specialized code to run exclusively on
-ax{i [M K| V¥ the processors supporting the extensions indicated
by the | , M K, Wcodes while also generating
generic |1A-32 code.

For example, on Pentium® Il processor, if you have mostly integer code and only a small portion
of floating-point code, you may want to compile with - ax Mrather than - ax K because MMX(TM)

125

technology extensions perform the best with the integer data.

The - ax and - X options are backward compatible with the extensions supported. On Intel®
Pentium® 4 and Xeon processors, you can gear your code to any of the previous processors
specified by K, M, or i .

Targeting a Processor, -t pp{ n}

For 1A-32-targeted compilations, the Intel® Fortran Compiler lets you choose whether to optimize
the performance of your application for specific processors or to ensure your application can
execute on a range of processors.

Optimizing for a Specific Processor Without Excluding Others

Use the - t pp{ n} option to optimize your application's performance for specific processors.

Regardless of which - t pp{ n} suboption you choose, your application is optimized to use all
the benefits of that processor with the resulting binary file still capable of running on any of the

processors listed.

To optimize for... Use...
Pentium® processor and Pentium processor with | t 5
MMX(TM) technology PP

Pentium Pro, Pentium Il and Pentium IlI -t pp6 (default
processors option)

Intel® Pentium® 4 and Xeon(TM) processors _tpp7

For example, the following commands compile and optimize the source program prog.f for the
Pentium Pro processor:

pronpt >i fc prog.f
pronpt>ifc -tpp6 prog.f

Exclusive Specialized Code with - x{i | M K| W

The - x{1 | M K| W option specifies the minimum set of processor extensions required to
exist on processors on which you execute your program as follows:

I Pentium® Pro, Pentium Il processors

M Pentium with MMX technology processor

K Pentium Il processor

W Pentium 4 and Xeon(TM) processors.
The resulting code can contain unconditional use of the specified processor extensions. When
you use

-x{1 | M K| W, the code generated by the compiler might not execute correctly on IA-32
processors that lack the specified extensions.
The following example compiles the program My pr 0g. f , using the i extension. This means the
program will require Pentium Pro, Pentium Il processors, and later architectures to execute.

pronmpt>ifc -Q2 -tpp6 -xi nyprog.f

The resulting program, myprog, might not execute on a Pentium processor, but will execute on
Pentium® Pro, Pentium II, and Pentium Il processors.

126

& Caution

If a program compiled with - X{ i | M K| W is executed on a processor that lacks the
specified extensions, it can fail with an illegal instruction exception, or display other
unexpected behavior.

- X Summary

To Optimize for... Use this option
Pentium Pro and Pentium Il processors, which use the | Xi

CMOV and FCMOV, and FCOM instructions

Pentium processors with MMX(TM) technology “xM

instructions

Pentium 11l processor with the Streaming SIMD “xK

Extensions, implies I and Minstructions

Pentium 4 and Xeon processors with the Streaming CxW

SIMD Extensions 2, implies i , M and K instructions

You can specify more than one code with the - X option. For example, if you specify - X VK the
compiler will decide whether the resulting executable will benefit better from the MMX technology
(M or the Streaming SIMD Extensions (K). It is the developer’s responsibility to use the option’s
version corresponding to the processor generation.

Specialized Code with -ax{i | M K| W

with - ax{i | M K| W you can instruct the compiler to compile your application so that
processor-specific extensions are included in the compilation but only used if the processor
supports them as follows:

I Pentium Pro, Pentium Il processors

M Pentium with MMX technology processor

K Pentium Il processor

W Pentium 4 and Xeon processors.
When the compiled application is run, it detects the extensions supported by the processor.
= |f the processor supports the specialized extensions, the extensions are executed.
= |f the processor does not support the specialized code, the extensions are not executed and

a more generic version of the code is executed instead.

Applications compiled with - ax{i | M K| W have increased code size, but the performance
of such code is better than standard optimized code, although slightly slower than if compiled with
the - x{1 | M K| W due to the latter's smaller overhead of checking for which processor the
application is being run on.

£l Note

Applications that you compile to optimize themselves for specific processors in this way
will execute on any Intel 32-bit processor. Such compilations are, however subject to any
exclusive specialized code restrictions you impose during compilation with the -x option.

- ax Summary

To Optimize for... Use this
option

Pentium® Pro and Pentium Il processors, - axi
which use the CMOV and FCMOV, and
FCOM instructions

127

Pentium processors with MMX(TM)
technology instructions

Pentium Il processor with the Streaming
SIMD Extensions, implies 1 and M
instructions

Pentium 4 processor with the Streaming SIMD|_ axW
Extensions 2, implies i , M and K instructions

- axM

- axK

Checking for Performance Gain

The - ax{i | M K| W option directs the compiler to find opportunities to generate special
versions of functions that use instructions supported on the specified processors. If the compiler
finds such an opportunity, it first estimates whether generating a processor-specific version of a
function results in a performance gain. If this is the case, the compiler generates both a
processor-specific version of a function and a generic version of this function that will run on any
IA-32 architecture processor.

You can specify more than one code with the - aX option. For example, if you specify - ax MK,
the compiler will decide whether the resulting executable will benefit better from the MMX
technology (M or the Streaming SIMD Extensions (K). At runtime, one of the two versions is
chosen to execute depending on the processor the program is currently running on. In this way,
the program can get large performance gains on more advanced processors, while still working
properly on older processors. It is the developer’s responsibility to use the option’s version
corresponding to the processor generation.

The disadvantages of using - ax{i | M K| W are:

= The size of the binary increases because it contains processor-specific and generic versions
of the code.

= The runtime checks to determine which code to run slightly affect performance.

Combining Processor Target and Dispatch
Options

The following table shows how to combine processor target and dispatch options to compile
applications with different optimizations and exclusions.

Optimize ...while optimizing without exclusion for...
exclusively for... |Pentium® |Pentium Pentium Pro |Pentium Il [Pentium Il |Pentium 4,
Processor [Processor |Processor Processor |Processor |Xeon(TM)
with Processors
MMX(TM)
technology
Pentium Processor -t pp5 -t pp5 -t pp6 -t pp6 -t pp6 -t pp7
Pentium Processor |N-A
i 'tpps; _tpp6 _tpp6! _tpp6! _tpp7;
with MMX technology “xM “xM “xM “xM
Pentium Pro N-A N-A
Processor -t ppé, -tpp6, |-tpp6, -t pp7,
- Xl - Xl - Xl - Xl
Pentium Il Processor |[N-A N-A N-A _t ppé, _t ppé, _tpp7,
-Xi M -Xi M -Xi M
Pentium Il Processor|N-A N-A N-A N-A -t ppé, -t pp7,

128

- xK - xK

Pentium 4, Xeon N-A N-A N-A N-A N-A _t 7
Processors))Fz\r;v !

Example of -x and -ax Combinations

If you wanted your application to
= always require the MMX technology extensions

= use Pentium Pro processor extensions when the processor it is run on offers it, and to not
use them when it does not

you could generate such an application with the following command line:
pronmpt>ifc -02 -tpp6 -xM -xi nyprog.f

- X Mabove restricts the application to running on Pentium processors with MMX technology or
later processors. If you wanted to enable the application to run on earlier generations of Intel 32-
bit processors as well, you would use the following command line:

pronpt>ifc -02 -tpp6 -axM nmyprog.f

Interprocedural Optimizations (IPO)

IPO Overview

Use - i p and - i PO to enable interprocedural optimizations (IPO), which enable the compiler to
analyze your code to determine where you can benefit from the optimizations listed in tables that
follow. See IPO options summary.

IA-32 and Itanium™-based applications

Optimization Affected Aspect of Program

inline function expansion calls, jumps, branches, and loops

interprocedural constant arguments, global variables, and return

propagation values

monitoring module-level static further optimizations, loop invariant code

variables

dead code elimination code size

propagation of function call deletion and call movement

characteristics

multifile optimization affects the same aspects as - | p, but
across multiple files

IA-32 applications only

Optimization Affected Aspect of Program
passing arguments in registers calls, register usage
loop-invariant code motion further optimizations, loop invariant code

Inline function expansion is one of the main optimizations performed by the interprocedural
optimizer. For function calls that the compiler believes are frequently executed, the compiler
might decide to replace the instructions of the call with code for the function itself.

129

With - i p, the compiler performs inline function expansion for calls to procedures defined within
the current source file. However, when you use - | PO to specify multifile IPO, the compiler
performs inline function expansion for calls to procedures defined in separate files.

To disable the IPO optimizations, use the - QO option.

Multifile IPO

Multifile IPO Overview

Multifile IPO obtains potential optimization information from individual program modules of a
multifile program. Using the information, the compiler performs optimizations across modules.
Building a program is divided into two phases: compilation and linkage. Multifile IPO performs
different work depending on whether the compilation, linkage or both are performed.

Compilation Phase

As each source file is compiled, multifile IPO stores an intermediate representation (IR) of the
source code in the object file, which includes summary information used for optimization.

By default, the compiler produces "mock" object files during the compilation phase of multifile
IPO. Generating mock files instead of real object files reduces the time spent in the multifile IPO
compilation phase. Each mock object file contains the IR for its corresponding source file, but no
real code or data. These mock objects must be linked using the - I pO option and i f C, or using
the Xi | d tool. (See Creating a Multifile IPO Executable Using a Project Makefile.)

@Note

Failure to link "mock" objects with i f ¢ -1 po or xi | d will result in linkage errors. There
are situations where mock object files cannot be used. See Compilation with Real Object
Files for more information.

Linkage Phase

When you specify -ipo, the compiler is invoked a final time before the linker. The compiler
performs multifile IPO across all object files that have an IR.

@Note

The compiler does not support multifile IPO for static libraries (. a files). See Compilation
with Real Object Files for more information.

- | pO enables the driver and compiler to attempt detecting a whole program automatically. If a
whole program is detected, the interprocedural constant propagation, stack frame alignment, data
layout and padding of common blocks perform more efficiently, while more dead functions get
deleted. This option is safe.

- Wp_i po is a whole program assertion flag that tells the compiler the whole program is present.
It enables multifile optimization with the whole program assumption that all user variables and
user functions seen in the compiled sources are referenced only within those sources. This is an
unsafe option. The user must guarantee that this assumption is safe.

Compilation with Real Object Files, -i po_obj

In certain situations you might need to generate real object files with - i p0. To force the compiler

to produce real object files instead of "mock" ones with IPO, you must specify - i po_objin

addition to - i po.

Use of - | pO_0Dbj is necessary under the following conditions:

= The objects produced by the compilation phase of - i PO will be placed in a static library
without the use of Xi | d or xi | d -1 i b. The compiler does not support multifile IPO for
static libraries, so all static libraries are passed to the linker. Linking with a static library that

130

contains "mock" object files will result in linkage errors because the objects do not contain
real code or data. Specifying - | pO_0Dbj causes the compiler to generate object files that

can be used in static libraries.

= Alternatively, if you create the static library using Xi | d orxi | d -1 i b, then the resulting

static library will work as a normal library.

= The objects produced by the compilation phase of - i PO might be linked without the

- 1 pO option and without the use of Xi | d.

= You want to generate an assembly listing for each source file (using - S) while compiling with
-1 po. If you use - I PO with - S, but without - i po_0bj , the compiler issues a warning
and an empty assembly file is produced for each compiled source file.

Creating a Multifile IPO Executable

The following table explains how to enable multifile IPO for compilations targeted for I1A-32 hosts
and for compilations targeted for Itanium(TM)-based systems.

IA-32 systems

ltanium(TM)-based systems

Compile your modules with -ipo as follows:
1.pronpt>ifc -ipo -c a.f b.f

c.f

Use - C to stop compilation after generating . O
files. Each object file has the IR for the
corresponding source file. With preceding results,
you can now optimize interprocedurally:
2.prompt>ifc -onu_ipo file -ipo
a.0 b.oc.o

The - Oname option stores the executable in
nu_i po_fi | e. Multifile IPO is applied only to
modules that have an IR, otherwise the object file
passes to link stage.

For efficiency, combine steps 1 and 2:
pronpt>ifc -ipo -onu_ipo file
a.f b.f c.f

Compile your modules with -ipo as follows:
1.pronpt>efc -ipo -c a.f b.f

c.f

Use - C to stop compilation after generating . O
files. Each object file has the IR for the
corresponding source file. With preceding results,
you can now optimize interprocedurally:
2.pronmpt>efc -onu_ipo file -ipo
a.o0 b.oc.o

The - Onane option stores the executable in
nu_i po_fi | e. Multifile IPO is applied only to
modules that have an IR, otherwise the object file
passes to link stage.

For efficiency, combine steps 1 and 2:

pronpt>efc -ipo -onu_ipo file
a.f b.f c.f

See Using Profile-Guided Optimization: An Example for a description of how to use multifile IPO

with profile information for further optimization.

Creating a Multifile IPO Executable Using a Project Makefile

Most applications use a make file or something similar to call a linker such as | d(1) . Thisis
done automatically when you compile and link with i f C. Therefore, when - i PO must result in a
separate linking step, you must use the linker driver xild instead, as follows:

pronpt>xild -ipo <LINK commandl i ne>

where:

-i po

(optional)

enables additional IPO diagnostic output

<LI NK_commandl| i ne>

is your linker command line

Use the Xi | d syntax when you use a makefile instead of step 2 in the example Creating a
Multifile IPO Executable. The following example places the multifile IPO executable in
filename:pronpt>xild -ofilenane a.o0 b.o c.o

131

f)Note

The - I PO option can reorder object files and linker arguments on the command line.
Therefore, if your program relies on a precise order of arguments on the command line,
- 1 PO can affect the behavior of your program.

Analyzing the Effects of Multifile IPO, -i po_c,-i po_S

The -1 po_c and - i po_S options are useful for analyzing the effects of multifile IPO, or when
experimenting with multifile IPO between modules that do not make up a complete program.

Use the - | pO__C option to optimize across files and produce an object file. This option performs
optimizations as described for - I PO, but stops prior to the final link stage, leaving an optimized
object file. The default name for this fileisi po_out . 0. You can use the - O option to specify a
different name. For example:

pronpt>ifc -tpp6 -ipo_c -ofilenanme a.f b.f c.f

Use the - i pO__S option to optimize across files and produce an assembly file. This option
performs optimizations as described for - i PO, but stops prior to the final link stage, leaving an
optimized assembly file. The default name for this file is 1 pO_out . S. You can use the - O
option to specify a different name. For example:

pronpt>ifc -tpp6 -ipo_S -ofilenanme a.f b.f c.f

For more information on in-lining and the minimum in-lining criteria, see Criteria for Inline
Function Expansion and Controlling Inline Expansion of User Functions.

Using - i p witn - Qopt i on Specifiers

You can adjust the Intel® Fortran Compiler's optimization for a particular application by
experimenting with memory and interprocedural optimizations.

Enter the - QOpt i on option with the applicable keywords to select particular inline expansions
and loop optimizations. The option must be entered with a - i p or - i PO specification, as
follows:

-i p[-Qoption,tool, opts]
where t 00l is Fortran (f) and opt s are - Qopt i on specifiers (see below).

See Passing Options to Other Tools (-Qoption,tool,opts) for details about - Qopt i on.

- Qopt 1 on Specifiers

If you specify - i p or - i po without any - Qopt i on qualification, the compiler

= expands functions in line

* propagates constant arguments

= passes arguments in registers

*= monitors module-level static variables.

You can refine interprocedural optimizations by using the following - Qopt i on specifiers. To

have an effect, the - Qopt I 0N option must be entered with either - I p or - i PO also specified,
as in this example:

-ip -Qoption, f,ip_specifier

where ip_specifier is one of the -Qoption specifiers described in the table that follows.

132

-Qoption Specifiers

Disables the passing of arguments in registers. By
default, external functions can pass arguments in
registers when called locally. Normally, only static
functions can pass arguments in registers,
provided the address of the function is not taken
and the function does not use a variable number of
arguments.

Sets the valid number of intermediate language
statements for a function that is expanded in line.
The number n is a positive integer. The number of
intermediate language statements usually exceeds
the actual number of source language statements.
The default is set to the maximum number of 200.

Sets the valid min number of intermediate
language statements for a function that

is expanded in line. The number n is a positive
integer. The default value for
ip_ninl_mn_stats is

IA-32 compiler:i p_ninl _mn_stats=7
Itanium(TM) compiler:
ip_ninl_mn_stats=15

Sets the maximum increase in the

t ot al _st at s. The number of intermediate
language statements for each function that is
expanded in line. The number n is a positive
integer. By default, each function can increase to a
maximum of 5000 statements.

Indicates that the source file contains the main
program and does not contain functions that are
referenced by external functions. If you do not
specify this option, the compiler retains an original
copy of each expanded in-line function.

The following command activates procedural and interprocedural optimizations on sour ce. f
and sets the maximum increase in the number of intermediate language statements to five for
each function:

-ip_args_in_regs=FALSE

-i p_ninl_max_stat s=n

-ip_ninl_mn_stats=n

-ip_ninl _max_total stats=n

-ip_no_external ref

pronmpt>ifc -ip -Qoptionf,-ip_ninl_max_stats=5 source.f
Inline Expansion of Functions

Criteria for Inline Function Expansion

For a routine to be considered for inlining, it has to meet certain minimum criteria. There are
criteria to be met by the call-site, the caller, and the callee. The call-site is the site of the call to
the function that might be inlined. The caller is the function that contains the call-site. The callee
is the function being called that might be inlined.

Minimum call-site criteria:

= The number of actual arguments must match the number of formal arguments of the callee.
» The number of return values must match the number of return values of the callee.

133

The data types of the actual and formal arguments must be compatible.

No multilingual inlining is permitted. Caller and callee must be written in the same source
language.

Minimum criteria for the caller:

At most 2000 intermediate statements will be inlined into the caller from all the call-sites
being inlined into the caller. You can change this value by specifying the option

-Qoptionf,-ip_inline_max_total stats=new val ue

The function must be called if it is declared as static. Otherwise, it will be deleted.

Minimum criteria for the callee:

Does not have variable argument list.

Is not considered infrequent due to the name. Routines which contain the following substrings
in their names are not inlined: abort, all oca, denied, err, exit,

fail, fatal, fault, halt, init, interrupt, invalid, quit,
rare, st op, t i meout , trace, t I ap, and war n.

Is not considered unsafe for other reasons.

Selecting Routines for Inlining

Once these criteria are met, the compiler picks the routines whose in-line expansions will provide
the greatest benefit to program performance. This is done using the following default heuristics:

The default heuristic focuses on call-sites in loops or calls to functions containing loops.

When profile information is available, the focus changes to the most frequently executed call-
sites.

Also, the default in-line heuristic does not permit the inlining of functions with more than 230
intermediate statements, or the number specified by the option
-Qoptionf,-ip_inline_max_stats. The default inline heuristic will stop inlining
when direct recursion is detected.

The default heuristic will always inline very small functions that meet the minimum inline
criteria. By default, functions with 7 or fewer intermediate statements will be inlined. This limit
can be modified with the option / Qopti on, f, /i p_ni nl _m n_st at s=new

val ue. See -Qoption Specifiers.

When you use profile-guided optimizations, a number of other heuristics are used (see Profile-
Guided Optimization (PGQO)).

Controlling Inline Expansion of User Functions

The compiler enables you to control the amount of inline function expansion, with the options
shown in the following summary.

Option Effect

-ip_no_inlining

This option is only useful if - i p or - 1 PO is also
specified. In such case, -1 p_no_i nl i ni ng
disables inlining that would result from the - i p
interprocedural optimizations, but has no effect on
other interprocedural optimizations.

-inline_debug_info

Preserve the source position of inlined code
instead of assigning the call-site source position to

inlined code.
IA-32 only: . o Disables partial inlining; can be used if - i p or
-ip_no_pinlining |-ipoisalso specified.

134

Profile-guided Optimizations

Profile-guided Optimizations Overview

Profile-guided optimizations (PGO) tell the compiler which areas of an application are most
frequently executed. By knowing these areas, the compiler is able to be more selective and
specific in optimizing the application. For example, the use of PGO often enables the compiler to
make better decisions about function inlining, thereby increasing the effectiveness of
interprocedural optimizations. See PGO Options summary.

Instrumented Program

Profile-guided Optimization creates an instrumented program from your source code and special
code from the compiler. Each time this instrumented code is executed, the instrumented program
generates a dynamic information file. When you compile a second time, the dynamic information
files are merged into a summary file. Using the profile information in this file, the compiler
attempts to optimize the execution of the most heavily travelled paths in the program.

Unlike other optimizations such as those strictly for size or speed, the results of IPO and PGO
vary. This is due to each program having a different profile and different opportunities for
optimizations. The guidelines provided help you determine if you can benefit by using IPO and
PGO. You need to understanding the principles of the optimizations and the unique aspects of
your source code.

Added Performance with PGO

In this version of the Intel® Fortran Compiler, PGO is improved in the following ways:
* Register allocation uses the profile information to optimize the location of spill code.

+ Forindirect function calls, branch prediction is improved by identifying the most likely
targets. With the Pentium® 4 and Xeon(TM) processors' longer pipeline, improving
branch prediction translates into high performance gains.

* The compiler detects and does not vectorize loops that execute only a small number of
iterations, reducing the run time overhead that vectorization might otherwise add.

Profile-guided Optimizations Methodology

PGO works best for code with many frequently executed branches that are difficult to predict at
compile time. An example is the code with intensive error-checking in which the error conditions
are false most of the time. The "cold" error-handling code can be placed such that the branch is
hardly ever mispredicted. Minimizing "cold" code interleaved into the "hot" code improves
instruction cache behavior.

PGO Phases

The PGO methodology requires three phases:

1. Instrumentation compilation and linking with - pr of _gen

2. Instrumented execution by running the executable; as a result, the dynamic-information files
(. dyn) are producedc

3. Feedback compilation with - pr of _use

135

The flowcharts below illustrate this process for IA-32 compilation and Itanium(TM)-based
compilation. A key factor in deciding whether you want to use PGO lies in knowing which sections
of your code are the most heavily used. If the data set provided to your program is very consistent
and it elicits a similar behavior on every execution, then PGO can probably help optimize your
program execution. However, different data sets can elicit different algorithms to be called. This
can cause the behavior of your program to vary from one execution to the next.

IA-32 Phases of Basic Profile-Guided Optimization

L
1. .In51n.|rnantred C-:umpiITin:-n: w| Oufput exscutable files with
ife -praf gen a.f instrumentad code:
a.ouke

S e

L Dhwdput dynamic infarmation

3 Insirumented Exacution: files with unique names for
| gach execution:

a.aut

8 hex digits.dyn

T

3. Feadback Compilation: Creates and uses merged
ife -prof use -my optien a.f dynamic infarmation
summary file:

pgopti.dpi

Profile-Guided
Crptirnized Coda

136

Phases of Basic Profile-Guided Optimization for Itanium(TM)-based
applications

P
1. Instrumented Compilation: w| Cuiput exectiable files with
efe -prof geh a.f instrumented code:
a.out

A

¥ Cutput dymamic information

7 |nstrumented Exacution: files with unique namse for
¥ gach exscution:

A _duE

8 hex digite.dyn

S

4. Feedback Compilation: Creates and uses marged
afe -prof use -my optien a.f dynamic information
surnirmary file:

pgopbi.dpi

Profile-Guided
Crptimized Code

Basic PGO Options

The options used for basic PGO optimizations are:
« -prof _gen[x] for generating instrumented code
« - prof __use for generating a profile-optimized executable

In cases where your code behavior differs greatly between executions, you have to ensure that
the benefit of the profile information is worth the effort required to maintain up-to-date profiles. In
the basic profile-guided optimization, the following options are used in the phases of the PGO:

137

Generating Instrumented Code, - prof _gen[x]

The - prof _gen[x] option instruments the program for profiling: to get the execution count
of each basic block. Used in phase 1 of the PGO to instruct the compiler to produce instrumented
code in your object files in preparation for instrumented execution. With X qualifier,

- pr of _genx, gathers extra information for use with the Proforder tool.

Generating a Profile-optimized Executable, - pr of _use

The - pr of _use option is used in phase 3 of the PGO to instruct the compiler to produce a
profile-optimized executable and merges available dynamic-information (. dyn) files into a

pgopti . dpi file.
£l Note

The dynamic-information files are produced in phase 2 when you run the instrumented
executable.

If you perform multiple executions of the instrumented program, - pr of _use merges the
dynamic-information files again and overwrites the previous pgopt i . dpi file.

See an example of using PGO.

f)Note

For Itanium(TM)-based applications, if you intend to use the - pr of _use option with
optimizations at the - O3 level, the -O3 option must be on. If you intend to use the

- pr of _use option with optimizations at the - O2 level or lower, you can generate the
profile data with the default options.

Advanced PGO Options

The options controlling advanced PGO optimizations are:

-prof _dirdirnaneand-prof filefil enane

Specifying the Directory for Dynamic Information Files

Use the - pr of _di r di r name option to specify the directory in which you intend to place
the dynamic information (. dyn) files to be created. The default is the directory where the
program is compiled. The specified directory must already exist.

You should specify - pr of _di r di r nane option with the same directory name for both the
instrumentation and feedback compilations. If you move the . dyn files, you need to specify the
new path.

Specifying Profiling Summary File
The - prof _filefil enane option specifies file name for profiling summary file.
Guidelines for Using Advanced PGO

When you use PGO, consider the following guidelines:

+ Minimize the changes to your program after instrumented execution and before feedback
compilation. During feedback compilation, the compiler ignores dynamic information for
functions modified after that information was generated.

f)Note

The compiler issues a warning that the dynamic information does not correspond to a
modified function.

138

* Repeat the instrumentation compilation if you make many changes to your source files
after execution and before feedback compilation.

+ Specify the name of the profile summary file using the - pr of _fi |l ef i | enamne
option
See PGO Environment Variables.

PGO Environment Variables

The environment variables determine the directory in which to store dynamic information files or
whether to overwrite pgopt i . dpi . Refer to your operating system documentation for
instructions on how to specify environment variables and their values.

The PGO environment variables are described in the table below.
Variable Description
Specifies the directory in which dynamic information files are

PROF_DIR created. This variable applies to all three phases of the profiling
process.
Initiates interval profile dumping in an instrumented user
PROF_DUMP_| NTERVAL application.

Alters the feedback compilation phase slightly. By default, during
the feedback compilation phase, the compiler merges the data
from all dynamic information files and creates a new

pgopti . dpi file, even if one already exists. When this variable
is set, the compiler does not overwrite the existing

pgopti . dpi file. Instead, the compiler issues a warning and
you must remove the pgopt i . dpi file if you want to use
additional dynamic information files.

See also the documentation for your operating system for instructions on how to specify
environment variables.

Example of Profile-Guided Optimization

The following is an example of the basic PGO phases:
1. Instrumentation Compilation and Linking—Use - pr of _gen to produce an executable
with instrumented information. Use also the - pr of _di r option as recommended for most
programs, especially if the application includes the source files located in multiple directories.
- pr of _di r ensures that the profile information is generated in one consistent place. For
example:

IA-32 applications:

PROF_NO_CLOBBER

pronpt>ifc -prof _gen -prof _dir/usr/profdata -c al.f
a2.f a3.f

pronpt>ifc al.o a2.0 a3.0
Itanium(TM)-based applications:

pronpt >efc -prof _gen -prof _dir/usr/profdata -c al.f
a2.f a3.f

pronpt>efc al.o a2.0 a3.o0

In place of the second command, you could use the linker (I d) directly to produce the
instrumented program. If you do this, make sure you link with the | i bi r c. a library.

139

2. Instrumented Execution—Run your instrumented program with a representative set of data
to create a dynamic information file.

pronpt >al

The resulting dynamic information file has a unique name and . dy n suffix every time you run
al. The instrumented file helps predict how the program runs with a particular set of data. You
can run the program more than once with different input data.

3. Feedback Compilation—Compile and link the source files with - pr of _use to use the
dynamic information to optimize your program according to its profile:
IA-32 applications:

pronpt>ifc -prof _use -ipo al.f a2.f a3.f

Itanium-based applications:
pronpt >efc -prof _use -ipo al.f a2.f a3.f

Besides the optimization, the compiler produces a pgopt i . dpi file. You typically specify the
default optimizations (- O2) for phase 1, and specify more advanced optimizations (- i p or
- 1 po) for phase 3. This example used - Q2 in phase 1 and the - i p in phase 3.

f)Note

The compiler ignores the - I p or the - I PO options with - pr of _gen.

The goal of function splitting is to improve the locality of executed instructions. Function splitting
achieves this goal by splitting the non-executed code from the executed code. The executed code
is emitted for each function, while the non-executed code is grouped together in a separate text
section. See Basic PGO Options.

Function Order List

Function Order List Overview

A function order list is a text that specifies the order in which the linker should link the non-static
functions of your program. This improves the performance of your program by reducing paging
and improving code locality. Profile-guided optimizations support the generation of a function
order list to be used by linker. The compiler determines the order using profile information.

Usage Guidelines

Use the following guidelines to create a function order list.
= The order list only affects the order of non-static functions.

= Do notuse - pr of _genx to compile two files from the same program simultaneously. This
means that you cannot use the - pr of _genx option with parallel makefile utilities.

Function Order List Utilities
To generate a function order list, the pr of mer ge and pr of or der utilities are used.
The pr of mer ge Utility

You will need to use the pr of mer ge utility to merge the . dyn files.

This tool merges the dynamic profile information files (. dyn). The compiler executes this tool
automatically during the feedback compilation phase when you specify - pr of _use. The
command-line usage for pr of nmer ge is as follows:

IA-32 applications:

140

pronpt >pr of nerge [-nol ogo] [-prof_dirdirnane]
Iltanium(TM)-based applications:
pronpt >prof nerge -em -p64 [-nol ogo] [-prof _dirdirnane]

where - pr of _di rdi rname isapr of mer ge utility option.
This merges all . dyn files in the current directory or the directory specified by - pr of _di r,
and produces the summary file pgopt i . dpi .

The - prof _fil efil enanme option enables you to specify the name of the . dpi file.
The command-line usage for pr of mer ge with - prof _fil efi | enane is as follows:
IA-32 compiler:

pronpt >pr of nerge [-nol ogo] [-prof filefilenane]

Itanium™ compiler:

pronpt >prof nerge -em -p64 [-nol ogo] [-prof filefilenane]
where / prof fil efil enamne isa profmerge utility option.

The pr of or der Utility

Use pr of or der to generate a function order list for use with the - ORDER linker option. The
syntax for this tool is as follows:

pronpt >prof order [-prof _dirdir_nane] [-oorder file]

where / prof _di rdi rname isapr of order utility option.

dir name is the directory containing the profile files (. dpi , . dyn, and. spi)

is the optional name of the function order list file. The default name is

order_file prof or d. t xt

The proforder utility is used as part of the feedback compilation phase, to improve program
performance.

To specify the filename of the . dpi file, use - prof fil efi | enane option. The syntax
for pr of or der withits- prof _fil efil enane optionis:

pronpt >prof order [-prof filefilenanme] [-oorderfil e]

Comparison of Function Order Lists and IPO Code Layout

The Intel® Fortran Compiler provides two methods of optimizing the layout of functions in the
executable:

= use of a function order list
= useof-ipo
Each method has its advantages. A function order list, created with pr of or der , enables you

to optimize the layout of non-static functions; that is, external and library functions whose names
are exposed to the linker.

The compiler cannot affect the layout order for functions it does not compile, such as library
functions. The function layout optimization is performed automatically when IPO is active.

Effects of the Function Order List

Function Type |Code Layout with Function Ordering with
-1 po pr of or der

Extern X X

141

\Library INo effect X

Dump Profile Data Utility

As part of the instrumented execution phase of profile-guided optimization, the instrumented
program writes profile data to the dynamic information file (. dyn file). The file is written after the
instrumented program returns normally from mai n() or calls the standard exit function.
Programs that do not terminate normally, can use the _PGOPTI| _Pr of _Dunp function.
During the instrumentation compilation (- pr of _gen) you can add a call to this function to your
program. Here is an example:

| NTERFACE
SUBROUTI NE PGOPTI _PROF_DUMP()

| MS$ATTRI BUTES
C, ALI AS:’ PGOPTI _Prof Dunp’ :: PGOPTI _PROF_DUWP
END SUBROUTI NE

END | NTERFACE

CALL PGOPTI PROF_DUMP()

f)Note

You must remove the call or comment it out prior to the feedback compilation with
- prof _use.

Example of Function Order List Generation

Assume you have a Fortran program that consists of filesf i | e1. f andfi | €2. f and that
you have created a directory for the profile data filesin / usr / pr of dat a. Do the following to
generate and use a function order list.

1. Compile your program by specifying - pr of _genx and - pr of _di r:
IA-32 compiler:

pronpt >i f ¢ - oMYPROG - prof _genx -prof _dir/usr/profdata
filel.f file2.f

Itanium(TM) compiler:

pronpt >ef ¢ - oOMYPROG - prof _genx -prof _dir/usr/profdata
filel.f file2.f

2. Run the instrumented program on one or more sets of input data.
pr onpt >MYPROG

The program produces a . dyn file each time it is executed.

3. Merge the data from one or more runs of the instrumented program using the pr of mer ge
tool to produce the pgopt i . dpi file.

pr onpt >pr of nerge -prof _dir/usr/profdata

4. Generate the function order list using the proforder tool. By default, the function order list is
produced in the file proford.txt.

prompt>proforder -prof_dir/usr/profdata -oMYPROG.txt
5. Compile your application with profile feedback by specifying the - pr of _use and the
- ORDER option to the linker. Again, use the - pr of _di r option to specify the location of the
profile files.

IA-32 compiler:

142

pronpt >i fc - oMYPROG - prof use -prof _dir/usr/profdata
filel.f file2.f -link - ORDER @WPROG. t xt

Itanium compiler:

pronpt >ef ¢ - oOMYPROG - prof use -prof _dir/usr/profdata
filel.f file2.f -link - ORDER @WPROG. t xt

PGO API: Profile Information Generation Support

PGO API Support Overview

The Profile Information Generation Support (Profile IGS) enables you to control the generation of
profile information during the instrumented execution phase of profile-guided optimizations.

Normally, profile information is generated by an instrumented application when it terminates by
calling the standard exi t () function.

To ensure that profile information is generated, the functions described in this section may be
necessary or useful in the following situations:

= The instrumented application exits using a non-standard exit routine.

= The instrumented application is a non-terminating application: exi t () is never called.
= The application requires control of when the profile information is generated.

A set of functions and an environment variable comprise the Profile IGS.

The Profile IGS Functions

The Profile IGS functions are available to your application by inserting a header file at the top of
any source file where the functions may be used.

#i ncl ude

f)Note

The Profile IGS functions are written in C language. Fortran applications need to call C
functions.

pgouser. h"

The rest of the topics in this section describe the Profile IGS functions.

f) Note

Without instrumentation, the Profile IGS functions cannot provide PGO API support.
The Profile IGS Environment Variable

The environment variable for Profile IGS is PROF_DUVMP_| NTERVAL. This environment
variable may be used to initiate Interval Profile Dumping in an instrumented user application. See
the recommended usage of _PGOPTI _Set I nterval Prof_ Dunp() for more
information.

Dumping Profile Information

The PGOPTI _Prof Dunp() function dumps the profile information collected by the
instrumented application and has the following prototype:

void PGOPTI _Prof_ Dunp(void);

The profile information is generated in a . dyn file (generated in phase 2 of the PGO).

143

Recommended usage

Insert a single call to this function in the body of the function which terminates the user
application. Normally, _PGOPTI_Prof_Dump() should be called just once.

It is also possible to use this function in conjunction with the _PGOPTI _Pr of _Reset ()
function to generate multiple . dy n files (presumably from multiple sets of input data).

Example

/* selectively collect profile
i nformation
for the portion of the application
i nvol ved in processing input data
*/
i nput _data = get i nput_data();
while (input_data) {
_PGOPTI _Prof Reset();
process_dat a(i nput _dat a);
_PGOPTI _Prof _Dunp();
I nput _data = get i nput_data();
}

Resetting the Dynamic Profile Counters

The PGOPTI _Prof Reset () function resets the dynamic profile counters and has the
following prototype:

void PGOPTI _Prof Reset(void);

Recommended usage

Use this function to clear the profile counters prior to collecting profile information on a section of
the instrumented application. See the example under _PGOPTI _Pr of _Dunp() .

Dumping and Resetting Profile Information

The PGOPTI _Prof Dunp_And_Reset () function dumps the profile information to a
new . dyn file and then resets the dynamic profile counters. Then the execution of the
instrumented application continues. The prototype of this function is:

void _PGOPTI _Prof Dunp_And_Reset (void);
This function is used in non-terminating applications and may be called more than once.

Recommended usage

Periodic calls to this function enables a hon-terminating application to generate one or more
profile information files (. dyn files). These files are merged during the feedback phase (phase
3) of profile-guided optimizations. The direct use of this function enables your application to
control precisely when the profile information is generated.

Interval Profile Dumping

The PGOPTI _Set Interval Prof Dunp() function activates Interval Profile
Dumping and sets the approximate frequency at which dumps occur. The prototype of the
function call is:

144

void PGOPTI _Set Interval Prof Dunp(int interval);

This function is used in non-terminating applications.

The i nt er val parameter specifies the time interval at which profile dumping occurs and is
measured in milliseconds. For example, if interval is set to 5000, then a profile dump and reset
will occur approximately every 5 seconds. The interval is approximate because the time-check
controlling the dump and reset is only performed upon entry to any instrumented function in your
application.

f) Note

1. Setting interval to zero or a negative number will disable interval profile dumping.

2. Setting a very small value for interval may cause the instrumented application to spend
nearly all of its time dumping profile information. Be sure to set interval to a large enough
value so that the application can perform actual work and substantial profile information is
collected.

Recommended usage

This function may be called at the start of a non-terminating user application, to initiate Interval
Profile Dumping. Note that an alternative method of initiating Interval Profile Dumping is by
setting the environment variable, PROF_DUMP_| NTERVAL, to the desired interval value prior
to starting the application.

The intention of Interval Profile Dumping is to allow a non-terminating application to be profiled
with minimal changes to the application source code.

High-level Language Optimizations
(HLO)

HLO Overview

High-level optimizations exploit the properties of source code constructs (for example, loops and
arrays) in the applications developed in high-level programming languages, such as Fortran and
C++. The high-level optimizations include loop interchange, loop fusion, loop unrolling, loop
distribution, unroll-and-jam, blocking, data prefetch, scalar replacement, data layout optimizations
and loop unrolling techniques.

The option that turns on the high-level optimizations is - O3. See high-level language options
summary. The scope of optimizations turned on by - O3 is different for IA-32 and Itanium(TM)-
based applications. See Setting Optimization Levels.
IA-32 and Itanium(TM)-based applications

_ B Enable - O2 option plus more aggressive optimizations,
for example, loop transformation and prefetching. - O3
optimizes for maximum speed, but may not improve
performance for some programs.

IA-32 applications

e In addition, in conjunction with the vectorization options,
-ax{M K| W and - x{ M K| W, - O3 causes the
compiler to perform more aggressive data dependency
analysis than for - O2. This may result in longer
compilation times.

145

Loop Transformations

All these transformations are supported by data dependence. These techniques also include
induction variable elimination, constant propagation, copy propagation, forward substitution, and
dead code elimination.The loop transformation techniques include:

= |oop normalization

= |oop reversal

= |oop interchange and permutation
= |oop skewing

= |oop distribution

= |oop fusion

= scalar replacement

These techniques also include induction variable elimination, constant propagation, copy
propagation, forward substitution, and dead code elimination. In addition to the loop
transformations listed for both 1A-32 and Itanium(TM) architectures above, the Itanium
architecture enables to implement collapsing techniques.

Scalar Replacement (IA-32 Only)

The goal of scalar replacement is to reduce memory references. This is done mainly by replacing
array references with register references.

While the compiler replaces some array references with register references when - Ol or - Q2 is
specified, more aggressive replacement is performed when - O3 (- scal ar _r ep) is specified.
For example, with - O3 the compiler attempts replacement when there are loop-carried
dependences or when data-dependence analysis is required for memory disambiguation.

_scal ar_rep][- Enables (default) or disables scalar replacement
] _rep performed during loop transformations (requires - O3).

Loop Unrolling with -unrol | [n]

The - unr ol | [n] option is used in the following way:

= - unrol | n specifies the maximum number of times you want to unroll a loop. The following
example unrolls a loop at most four times:

pronpt>ifc -unroll 4 a.f
To disable loop unrolling, specify N as 0. The following example disables loop unrolling:
pronpt>ifc -unroll 0 a.f

= -unrol !l (n omitted) lets the compiler decide whether to perform unrolling or not.
= -unroll O (n =0)disables unroller.
Itanium(TM) compiler currently uses only N = 0; any other value is NOP.

Benefits and Limitations of Loop Unrolling

The benefits are:
= Unrolling eliminates branches and some of the code.

= Unrolling enables you to aggressively schedule (or pipeline) the loop to hide latencies if you
have enough free registers to keep variables live.

146

= The Pentium® 4 or Xeon (TM) processors can correctly predict the exit branch for an inner
loop that has 16 or fewer iterations, if that number of iterations is predictable and there are no
conditional branches in the loop. Therefore, if the loop body size is not excessive, and the
probable number of iterations is known, unroll inner loops for: - Pentium 4 or Xeon
processor, until they have a maximum of 16 iterations - Pentium IIl or Pentium Il processors,
until they have a maximum of 4 iterations

The potential costs are:

= Excessive unrolling, or unrolling of very large loops can lead to increased code size.

= |f the number of iterations of the unrolled loop is 16 or less, the branch predictor should be
able to correctly predict branches in the loop body that alternate direction.

For more information on how to optimize with - unr ol | [n] , refer to Intel® Pentium® 4 and

Intel® Xeon(TM) Porcessor Optimization Reference Manual.

Memory Dependency with IVDEP Directive

The - i vdep_par al | el option discussed below is used for Itanium(TM)-based applications
only.

The - i vdep_par al | el option indicates there is absolutely no loop-carried memory
dependency in the loop where | VDEP directive is specified. This technique is useful for some
sparse matrix applications.

For example, the following loop requires - i vdep_par al | el in addition to the directive

| VDEP to indicate there is no loop-carried dependencies.

! DI R$I VDEP

The following example shows that using this option and the | VDEP directive ensures there is no
loop-carried dependency for the store into a() .

I DI R$I VDEP

do i=1,n

a(b(j)) = a(b(j))+1
enddo

See | VDEP directive for 1A-32 applications.

Prefetching

The goal of - pr ef et ch insertion is to reduce cache misses by providing hints to the processor
about when data should be loaded into the cache. The prefetching optimizations implement the
following options:

Enable or disable (- pr ef et ch-) prefetch insertion.
This option requires that - O3 be specified. The default
with - B is - pr ef et ch.

-prefetch[-]

147

To facilitate compiler optimization:

= Minimize use of global variables and pointers.

= Minimize use of complex control flow.

= Usethe const modifier, avoid r egi st er modifier.
= Choose data types carefully and avoid type casting.

For more inpoframtion on how to optimize with - pr ef et ch[-], refer to Intel® Pentium® 4
and Intel® Xeon(TM) Porcessor Optimization Reference Manual.

Parallelization

Parallelization Options Overview

For shared memory parallel programming, the Intel® Fortran Compiler supports both
the OpenMP?*, version 1.1 API, and an automatic parallelization capability. The following
table lists the options that perform this support.

Enables the auto-parallelizer to generate multithreaded
code for loops that can be safely executed in parallel.
Default: OFF

Sets a threshold for the auto-parallelization of loops
based on the probability of profitable execution of the
loop in parallel, N=0 to 100. Default: N=75.

Controls the auto-parallelizer's diagnostic levels.
Default: - par _report1.

_open Enables the parallelizer to generate multithreaded code
pennp based on the OpenMP directives. Default: OFF

Controls the OpenMP parallelizer's diagnostic levels.
Default: - opennp_report1l

-paral |l el

- par _t hreshol d{ n}

-par _report{0] 1] 2| 3}

opennp_report{0]| 1] 2}

f) Note

If both - opennp and - par al | el are specified on the command line, then:

= if and only if OpenMP directives are present within the subroutine, then the - opennp will be
honored for this subroutine;

= else- paral | el will be honored for this routine.

Auto-parallelization

The auto-parallelization feature of the Intel® Fortran Compiler implements a high-level
symmetric multiprocessing (SMP) programming model that provides you with an easy
way to exploit the parallelism of SMP systems.

Automatic parallelization relieves the user from having to deal with the low-level

details of iteration modification, data partitioning, thread scheduling and synchronizations,
while exploiting the performance potential available from multiprocessor systems.

Enabling Auto-parallelizer

To enable the auto-parallelizer, use the - par al | el option. The - par al | el option detects
parallel loops capable of being executed safely in parallel and automatically generates multi-
threaded code for these loops. An example of the command using auto-parallelization is as
follows:

148

IA-32 compilations:
pronpt>ifc -c -parallel -par_threshol dO nyprog.f
Itanium-based compilations:

pronpt >efc -c -parallel -par_threshol dO nyprog.f

Auto-parallelization Environment Variables

Option Description Default
OVP Controls the number of threads Number of processors currently
_NUM_THREADS used. installed in the system
Specifies the type of runtime .
OVP_SCHEDULE scheduling. static

Guidelines for Effective Auto-parallelization Usage

Enhance the power and effectiveness of the auto-parallelizer by following these coding
guidelines:

= Expose the trip count of loops whenever possible; specifically use constants where the trip
count is known and save loop parameters in local variables.

= Avoid placing structures inside loop bodies that the compiler may assume to carry dependent
data, for example, procedure calls or global references.

Analyzing Compiler for Auto-parallelization

Currently, compiler is analyzed only on loop nests, but potentially on independent regions of code
(task parallelism). A loop is parallelizable if:

= there is no loop-carried dependency or

= any loop-carried dependencies can be resolved by some code transformation, for example:
privatization of scalars or runtime dependency testing.

Privatization of scalars is an operation of re-assigning the storage of scalars from the static or
parent stack area to the local stack of a thread to enable parallelization. This operation
requires a WRI TE permission and is usually performed to remove a data dependence
between concurrently executing threads.

Preparing for Auto-parallelization

To prepare auto-parallelization, the compiler performs the following transformations:
= Partitions data accesses: shared, private, first-private, last-private, reduction
= Modifies loop parameters and references
= Generates new entry/exit per threaded task
= Generates both parallel and serial versions with conditional execution based on:
o work/overhead threshold analysis
0 runtime dependency testing

Threshold for Auto-parallelization

The - par _t hr eshol d{ n} option sets a threshold for the auto-parallelization of loops
based on the probability of profitable execution of the loop in parallel, N=0 to 100. This option is
used for loops whose computation work volume cannot be determined at compile-time. The
threshold is usually relevant when the loop trip count is unknown at compile-time.

The - par _t hr eshol d{ n} option has the following versions and functionality:

149

= Default: - par _t hr eshol d is not specified in the command line, which is the same as

when - par _t hr eshol dO is specified. The loops get auto-parallelized regardless of
computation work volume, that is, parallelize always.

= -par_threshol d100 - loops get auto-parallelized only if profitable parallel execution is

almost certain.

= The intermediate 1 to 99 values represent the percentage probability for profitable speed-up.

For example, N=50 would mean: parallelize only if there is a 50% probability of the code

speeding up if executed in parallel.

= The default value of N is N=75 (or - par _t hr eshol d75). When - par _t hreshol d

is used on the command line without a number, the default value passed is 75.

The compiler applies a heuristic that tries to balance the overhead of creating multiple threads

versus the amount of work available to be shared amongst the threads.

Using Auto-parallelization

Autoparallelization enables you to automatically detect different code sequences which can be
correctly and profitably executed concurrently, in separate threads. For example, the code in the

first row of the following example can be computed in two threads:

do i=1, 100

a(i) = a(i) + b(i) * c(i)
enddo
Thread 1

do i=1,50

a(i) = a(i) + b(i) * c(i)
enddo
Thread 2

do i =50, 100
a(i) = a(i) + b(i) * c(i)

enddo

Auto-parallelization Examples

Use auto-parallelization for the subroutine daxpy.

Subroutine daxpy

subrouti ne daxpy
par anet er (N=1000)
doubl e precision a(N), b(N), s
do i=1, N
a(i) = a(i) * s + b(i)
enddo
end

Parent Thread Code

subrouti ne daxpy
par anet er (N=1000)
doubl e precision a(N), b(N), s

ext ernal daxpy_par _| oopO, knpc_ok to fork

150

| ogi cal knpc_ok to fork
if (knmpc_ok to fork() .eqv. .true.) then
call knmpc_fork call(daxpy_par_|oop0O, a, b, s)
el se
call knpc_serialized parallel(knpc_tid)
cal | daxpy_par | oopO(kmpc_tid, a, b, s)
call knpc_end_serialized parallel(knpc_ tid)
endi f
end

In the above example, work threshold and runtime dependency tests are combined in this i f
statement:
if (knmpc_ok to fork()

.eqv. .true.)

Child Thread Code
subrouti ne daxpy(knpc_tid, a, b,
paranet er (N=1000)
doubl e precision a(N), b(N), s
i nteger |b, ub, inc
cal | knpc_for_statlc_init(knpc_tid,
do i=Ilb,ub,inc
a(i) = a(i) * s + b(i)
enddo

call knmpc for _static fini(knpc_tid)
end

s)

| b, ub, inc)

Using /Qpar_report

subrouti ne daxpy()

par anet er (N=1000)
external foo

i nt eger, pointer a(:)
C Assuned side effects

do i=1, N
= q(i) + foo()

q(i)
dependency

enddo
C Real

do i:1,N
q(i) =

enddo
end

g(i-1) + i

Using Auto-parallelization
Directive

subrouti ne daxpy
par anet er (N=1000)
doubl e precision a(N)
i nteger x(N)
'DI R$ PARALLEL
do i=1, N
a(i) = a(x(i)) * 2
enddo
end

151

Auto-parallelizer’s Diagnostic

The - par _report{0] 1| 2| 3} option controls the auto-parallelizer’s diagnostic levels 0, 1,
2, or 3 as follows:

- par _report 0 = no diagnostic information is displayed.
- par _report 1 =indicates loops successfully auto-parallelized (default).
- par _report 2 = indicates loops successfully and unsuccessfully auto-parallelized.

- par _report 3 =same as 2 plus additional information about any proven or assumed
dependences inhibiting auto-parallelization.

Troubleshooting Tips

= Use-par _threshol dO to see if the compiler assumed there was not enough
computational work

= Use-par _report 3 to view diagnostics

= Use! DI REPARALLEL directive to eliminate assumed data dependencies (see more on
this directive later in this topic).

= Use- i poO to eliminate assumed side-effects

Example below shows an aoutput generated by - par _report 3 as a result from the
command:

pronpt>ifc -c -parallel -par_thresholdO -par_report3
nmypr og. f

-par_report Output Example

external subroutine XYZ

PROCEDURE: XYZ

SERI AL LOOP: line 9: non-parallel candidate | oop
due to statenent at |ine 10

SERI AL LOOP: Line 14

Reason: FLOW dependence for "g" fromline 15 to
l'i ne 15.

18 Lines Conpil ed

IDIR$PARALLEL Directive

The ! DI REPARALLEL directive instructs the compiler to ignore dependencies which it
assumes may exist and which would prevent correct parallelization in the immediately following
loop. However, if dependencies are proven, they are not ignored.

The ! DI RENOPARALLEL directive disables auto-parallelization for the immediately following
loop.

Parallelization with OpenMP*

For shared memory parallel programming, the Intel® Fortran Compiler supports the OpenMP*,
version 1.1 API. The OpenMP Fortran API has recently emerged as a standard for shared
memory parallel programming. This feature relieves the user from having to deal with the low-
level details of iteration partitioning, data sharing, and thread scheduling and synchronization. It
also provides the benefit of the performance available from multiprocessor systems.

The Intel® Fortran Compiler supports OpenMP API version 1.1 and performs code transformation
to automatically generate multithreaded codes based on the user's OpenMP directive annotations

152

in the program. For more information on the OpenMP standard, visit www.openmp.org web site.
The Intel Extensions to OpenMP topic describes the extensions to the version 1.1 standard that

have been added by Intel in the Intel Fortran Compiler.

f)Note

As with many advanced features of compilers, you must be sure to properly understand
the functionality of the auto-parallelization options in order to use them effectively and
avoid unwanted program behavior.

Command Line Options

The Parallelization capability of the Intel Fortran Compiler uses the following options:

- opennp_r epor t O = no diagnostic information
is displayed.

-opennp_r eport 1 = display diagnostics
indicating loops, regions, and sections successfully
parallelized (default).

-opennp_report 2 =same as

- opennp_r eport 1 plus diagnostics indicating
master construct, single construct, critical sections,
order construct, atomic directive, etc. successfully
handled.

Option Description Default
_open Enables the parallelizer to generate multithreaded OFF
pennp code based on the OpenMP directives. The code can
be executed in parallel on both uniprocessor and
multiprocessor systems.
) Controls the OpenMP parallelizer’s diagnostic levels |
opennp 0, 1, or 2 as follows: opennp_
_report{0| 1| 2} reportl

OpenMP* Standard Option

For complete information on the OpenMP* standard, visit the www.openmp.org web site. The
Intel Extensions to OpenMP topic describes the extensions to the standard that have been added

by Intel in the Intel® Fortran Compiler.

OpenMP Fortran Directives and Clauses

An OpenMP directive has the form:

onp-sentinel directive [directive clause [directive cl ause

Anonp-senti nel is either

I $OVP
CsOwP

with no intervening spaces for fixed form source input, or

I $OWP

for free form source input.

153

OpenMP Environment Variables

Variable Description Default
OVP_SCHEDULE Sets the run-time schedule type and chunk size. STATI C

OVP Sets the number of threads to use during Number of
_NUM_THREADS execution. processors
OVP_DYNAM C Enables or disables the dynamic adjustment of EALSE.

the number of threads.

OVP_NESTED Enables or disables nested parallelism. EALSE.

See the lists of OpenMP* Standard Directives and Clauses in the Reference section.

OpenMP* Runtime Library Routines

OpenMP* provides several runtime library routines to assist you in managing your program in
parallel mode. Many of these runtime library routines have corresponding environment variables
that can be set as defaults. The runtime library routines enable you to dynamically change these
factors to assist in controlling your program. In all cases, a call to a runtime library routine
overrides any corresponding environment variable.

See the List of OpenMP* Runtime Library Routines in the Reference section.

Intel Extensions to OpenMP*

This topic describes the extensions to the standard that have been added by Intel in the Intel®
Fortran Compiler. For complete information on the OpenMP* standard, visit the www.openmp.org
website.

Environment Variables

Environment Description
Variable

KMP_STACKSI ZE

Gets and sets the wait time in milliseconds that the
libraries wait after completing the execution of a parallel
region before putting threads to sleep.

Gets and sets the number of bytes to allocate for each
parallel thread to use asits private stack.

KVP_SPI N_COUNT Helps to fine-tune the critical section.

KMP_BLOCKTI MVE

Thread-level MALLOC()

The Intel Fortran Compiler implements an extension to the OpenMP runtime library to enable
threads to allocate memory from a heap local to each thread.

The memory allocated by these routines must also be freed by the FREE routine. While it is legal
for the memory to be allocated by one thread and FREE'd by a different thread, this mode of
operation has a slight performance penalty.

The interface is identical to the MALLOC() interface except the entry points are prefixed with
KMP_, as shown below.

Prototype

| NTERFACE
| NTEGER FUNCTI ON KMP_MALLOC
(KMP SI ZE t)

154

I NTEGER KVP_SI ZE _t
END FUNCTI ON KMP_MALLOC
END | NTERFACE

KMP_SI ZE_t is the number of bytes of memory to be allocated

| NTERFACE

SUBROUTI NE

KMP_FREE(KMP_ADDRESS)

| NTEGER KMP_ADDRESS
END SUBROUTT NE KMP_FREE
END | NTERFACE

KIMP_ADDRESS is the starting address of the memory block to be freed.

Examples of OpenMP* Usage
The following examples show how to use the OpenMP* feature.
A Simple Difference Operator

This example shows a simple parallel loop where each iteration contains different number of
instruc_tions. To get good load balancing, dyn{;\mic scheduling is used. The end do has a
nowai t because there is an implicit bar r i er at the end of the parallel region.

subroutine do_1 (a,b,n)
real a(n,n), b(n,n)
c$onp parall el
c$omp& shared(a, b, n)
c$omp& private(i,j)
c$onp do schedul e(dynam c, 1)

doi =2, n
doj =1, i o o
b(J!I):(a(J!I)+a(J!I_1))/2
enddo
enddo

c$onp end do nowait
c$onp end paralle
end

Two Difference Operators

This example shows two parallel regions fused to reduce f or k/ | 0i n overhead. The first end
do has anowai t because all the data used in the second loop is different than all the data
used in the first loop.

subroutine do_2 (a,b,c,d, mn)
real a(n,n), b(n,n), c(mm, d(mm
c$onp parall el
c$omp& shared(a, b, c,d, mn)
csomp& private(i,j)
c$onp do schedul e(dynam c, 1)
doi =2, n
doj =1, i

155

b(j.,i) = (a(j,i) +a(j,i-1))/ 2
enddo
enddo
c$onp end do nowait
c$onp do schedul e(dynami c, 1)

doi =2, m
doj =1, i o o
d(J!I) :(C(J!I) +C(J!I_1))/2
enddo
enddo

c$onp end do nowait
c$onp end paralle
end

Vectorization (IA-32 Only)

Vectorization Overview

The vectorizer is a component of the Intel Fortran Compiler that automatically uses SIMD
instructions in the MMX(TM), SSE, and SSE?2 instruction sets. The vectorizer detects operations
in the program that can be done in parallel, and then converts the sequential program to process
2, 4, 8 or up to 16 elements in one operation, depending on the data type.

This section provides options description, guidelines, and examples for Intel® Fortran Compiler
vectorization implemented by IA-32 compiler only. The following list summarizes this section
contents.

= A quick reference of vectorization functionality and features
= Descriptions of compiler options to control vectorization
= Vectorization Key Programming Guidelines
= Descriptions of the Fortran language features to control vectorization
= Discussion and general guidelines on vectorization levels:
- automatic vectorization
- vectorization with user intervention
= Examples demonstrating typical vectorization issues and resolutions

Vectorizer Options

Vectorization is an 1A-32-specific feature and can be summarized by the command line options
described in the following tables. Vectorization depends upon the compiler's ability to
disambiguate memory references. Certain options may enable the compiler to do better
vectorization. These options can enable other optimizations in addition to vectorization. When a -
x{M|K|W?} or -ax{M|K|W?} is used and -O2 (which is ON by default) is also in effect, the vectorizer
is enabled.

“x{M K| W Generate specialized code to run exclusively on the
processors supporting the extensions indicated by
{M K| W . See Exclusive Specialized Code with

-x{i | M K| W for details.

f) Note
- Xi is not a vectorizer option.

156

“ax{M K| W Generates, on a single binary, code specialized to the
extensions specified by { M K| W but also generates generic

IA-32 code. The generic code is usually slower. See

Specialized Code with

-ax{i | M K| W for details.

£l Note

- axi is not a vectorizer option.

t Controls the diagnostic messages from the vectorizer as

follows:

N = 0: no information

N = 1: indicates vectorized /non-vectorizerd integer loops

Def aul t: N = 2: indicates vectorized /non-vectorized integer loops
-vec_reportl N = 3: indicates vectorized /non-vectorized integer loops and

prohibit data dependence information

N = 4: indicates non-vectorized loops

N = 5: indicates non-vectorized loops and prohibit data

dependence information

Turns off vectorizer.

-vec_repor
{0l 1] 2| 3] 4] 5}

-vec-

Vectorization Key Programming Guidelines

The goal of vectorizing compilers is to exploit single-instruction multiple data (SIMD) processing
automatically. Review these guidelines and restrictions, see code examples in further topics, and
check them against your code to eliminate ambiguities that prevent the compiler from achieving
optimal vectorization.

Guidelines

You will often need to make some changes to your loops. However, you should make only the

changes needed to enable vectorization and no others.

For loop bodies -

Use:

= Straight-line code (a single basic block)

= Vector data only; that is, arrays and invariant expressions on the right hand side of
assignments. Array references can appear on the left hand side of assignments.

= Only assignment statements

Avoid:

»= Function calls

= Unvectorizable operations

= Mixing vectorizable types in the same loop

= Data-dependent loop exit conditions

= Loop unrolling (compiler does it)

= Decomposing one loop with several statements in the body into several single-statement
loops.

Restrictions

Vectorization depends on the two major factors:

= Hardware. The compiler is limited by restrictions imposed by the underlying hardware. In the
case of Streaming SIMD Extensions, the vector memory operations are limited to St r i de-
1 accesses with a preference to 16-byte-aligned memory references. This means that if the
compiler abstractly recognizes a loop as vectorizable, it still might not vectorize it for a distinct
target architecture.

157

= Style. The style in which you write source code can inhibit optimization. For example, a
common problem with global pointers is that they often prevent the compiler from being able
to prove two memory references at distinct locations. Consequently, this prevents certain
reordering transformations.

Many stylistic issues that prevent automatic vectorization by compilers are found in loop

structures. The ambiguity arises from the complexity of the keywords, operators, data references,

and memory operations within the loop bodies.

However, by understanding these limitations and by knowing how to interpret diagnostic

messages, you can modify your program to overcome the known limitations and enable effective

vectorizations. The following sections summarize the capabilities and restrictions of the vectorizer
with respect to loop structures.

Data Dependence

Data dependence relations represent the required ordering constraints on the operations in serial
loops. Because vectorization rearranges the order in which operations are executed, any auto-
vectorizer must have at its disposal some form of data dependence analysis.

An example where data dependencies prohibit vectorization is shown below. In this example,
each element of an array is changed to be function of itself and its two neighbors.

Data-dependent Loop

REAL DATA(O: N)
| NTEGER |
DO =1, N1
DATA(1) = DATA(I-1)*0.25 + DATA(1)*0.5 + DATA(I +1)*0. 25
END DO

The loop in the above example is not vectorizable because the WRI TE to the current element
DATA(|) is dependent on the use of the preceding element DATA(| - 1) , which has already
been written to and changed in the previous iteration. To see this, look at the access patterns of
the array for the first two iterations as shown below.

Data Dependence Vectorization
Patterns

| =1: READ DATA (0)
READ DATA (1)
READ DATA (2)

WRI TE DATA (1)

=2: READ DATA(1)
READ DATA (2)
READ DATA (3)
WRI TE DATA (2)

In the normal sequential version of this loop, the value of DATA(1) read from during the second
iteration was written to in the first iteration. For vectorization, the iterations must be done in
parallel, without changing the semantics of the original loop.

Data Dependence Analysis

Data dependence analysis involves finding the conditions under which two memory accesses
may overlap. Given two references in a program, the conditions are defined by:

= whether the referenced variables may be aliases for the same (or overlapping) regions in
memory, and, for array references

158

= the relationship between the subscripts

For 1A-32, data dependence analyzer for array references is organized as a series of tests, which
progressively increase in power as well as in time and space costs. First, a number of simple
tests are performed in a dimension-by-dimension manner, since independence in any dimension
will exclude any dependence relationship. Multidimensional arrays references that may cross
their declared dimension boundaries can be converted to their linearized form before the tests are
applied. Some of the simple tests that can be used are the fast greatest common divisor (GCD)
test and the extended bounds test. The GCD test proves independence if the GCD of the
coefficients of loop indices cannot evenly divide the constant term. The extended bounds test
checks for potential overlap of the extreme values in subscript expressions. If all simple tests fail
to prove independence, we eventually resort to a powerful hierarchical dependence solver that
uses Fourier-Motzkin elimination to solve the data dependence problem in all dimensions. For
more details of data dependence theory and data dependence analysis, refer to the Publications
on Compiler Optimizations.

Loop Constructs

Loops can be formed with the usual DO- ENDDOand DO VWHI LE, or by using a GOTOand a
label. However, the loops must have a single entry and a single exit to be vectorized. Following
are the examples of correct and incorrect usages of loop constructs.
Correct Usage
SUBRQUTI NE FOO (A, B, O
DI MENSI ON A(100), B(100), C(100)
| NTEGER |
I =1
DO WHI LE
A(l) =B
IF (A(I)
I =1 +
ENDDO
RETURN
END

| .LE. 100)
1) * (1)
0.

(
(1)

.LT. 0.0) A(l) =0.0
1

Incorrect Usage

SUBROUTI NE FOO (A, B, O
DI MENSI ON A(100) , B(100), C(100)
| NTEGER |
| =1
DO WHI LE (I .LE. 100)
ACl) = B(I) * C(I)
IF (A1) .LT. 0.0) GOTO 10

=1 +1
ENDDO

10 CONTI NUE
RETURN
END

Loop Exit Conditions

Loop exit conditions determine the number of iterations that a loop executes. For example, fixed
indexes for loops determine the iterations. The loop iterations must be countable; that is, the
number of iterations must be expressed as one of the following:

159

= aconstant
= aloop invariant term
= alinear function of outermost loop indices

Loops whose exit depends on computation are not countable. Examples below show countable

and non-countable loop constructs.

Correct Usage for Countable Loop, Example 1

SUBROUTI NE FOO (A, B, C, N, LB)

DI MENSI ON A(N), B(N), C(N)

| NTEGER N, LB, |, COUNT

I Nunber of iterations is "N- LB + 1"
COUNT = N

DOV\HILE(CCIJNT GE. LB)

A(|)=B(l) C(l)

COUNT =

I =1 +1

ENDDO ! LB is not defined within |oop
RETURN

END

Correct Usage for Countable Loop, Example 2

' Nunber of iterations is (N-M2) /2
SUBROUTINE FOO (A, B, C, M N, LB)
DI MENSI ON A(N), B(N) C(N)

INTEGERI M

END

Incorrect Usage for Non-countable Loop

' Nunber of iterations is dependent on
A(l)

SUBROUTI NE FOO (A, B, ©

DI MENSI ON A(100), B(100), C(100)

| NTEGER |

| =1

DO WHI LE (A(l) .GT. 0.0)
ACl) =B(I) * C(I)
=1 + 1

ENDDO

RETURN

160

Types of Loop Vectorized

For integer loops, the 64-bit MMX(TM) technology and 128-bit Streaming SIMD Extensions (SSE)
provide SIMD instructions for most arithmetic and logical operators on 32-bit, 16-bit, and 8-bit
integer data types. Vectorization may proceed if the final precision of integer wrap-around
arithmetic will be preserved. A 32-bit shift-right operator, for instance, is not vectorized if the final
stored value is a 16-bit integer. Because the MMX(TM) and SSE instruction sets are not fully
orthogonal (byte shifts, for instance, are not supported), not all integer operations can actually be
vectorized.

For loops that operate on 32-bit single-precision and 64-bit double-precision floating-point
numbers, SSE provides SIMD instructions for the arithmetic operators '+, -, ', and /. In
addition, SSE provides SIMD instructions for the binary M N and MAX and unary SORT
operators. SIMD versions of several other mathematical operators (like the trigonometric
functions SI N, COS, TAN) are supported in software in a vector mathematical runtime library
that is provided with the Intel® Fortran Compiler.

Stripmining and Cleanup

The compiler automatically strip-mines your loop and generates a cleanup loop.
Stripmining and Cleanup Loops

Before Vectorization

do while (i<=n)
a(i) =b(i) +c(i) ! Oiginal |oop code
= + 1
end do
After Vectorization
I The vectorizer generates the follow ng two | oops
i =1
do while (i < (n - nod(n,4)))
I Vector strip-mned | oop.
a(i:i+3) = b(i:i+3) + c(i:i+3)
i =1 + 4
end do
do while (i <= n)
a(i) = b(i) + c(i) I Scal ar cl ean-up | oop
=i +1
end do

Statements in the Loop Body

The vectorizable operations are different for floating point and integer data.

Floating-point Array Operations

The statements within the loop body may be REAL operations (typically on arrays). Arithmetic
operations supported are addition, subtraction, multiplication, division, negation, square root,
MAX, M N, and mathematical functions such as SI N and COS. Note that conversion to/from
some types of floats is not valid. Operation on DOUBLE PRECI SI ONtypes is not valid, unless
optimizing for a Pentium 4 and Xeon(TM) processors system, using the - X Wor - ax\Wcompiler
option.

161

Integer Array Operations

The statements within the loop body may be arithmetic or logical operations (again, typically for
arrays). Arithmetic operations are limited to such operations as addition, subtraction, ABS, M N,
and MAX. Logical operations include bitwise AND, OR and XOR operators. You can mix data
types only if the conversion can be done without a loss of precision. Some example operators
where you can mix data types are multiplication, shift, or unary operators.

Other Operations

No statements other than the preceding floating-point and integer operations are permitted. The
loop body cannot contain any function calls other than the ones described obove.

Language Support and Directives
This section addresses language features that enhance vectorization of application code.
| VDEP Directive

The compiler supports | VDEP directive which instructs the compiler to ignore assumed vector
dependences. Use this directive when you know that the assumed loop dependences are safe to
ignore. The syntax for the directive is:

CDI R$I VDEP

! DI R$I VDEP
The usage of the directive differs depending on the loop form, see examples below.
Loop 1
Do i

= A(*) + 1

A(*) =
enddo
Loop 2
Do i

A(*) =

= A(*) + 1
enddo

For loops of the form 1, use old values of A, and assume that there is no loop-carried flow
dependencies from DEF to USE.

For loops of the form 2, use new values of A, and assume that there is no loop-carried anti-
dependencies from USE to DEF.

In both cases, it is valid to distribute the loop, and there is no loop-carried output dependency.
Example 1
CDI R$I VDEP
do j=1,n
a(j) =a(j+tm + 1
enddo

162

Example 2

CDI R$I VDEP
do j =1,n

Example 1 ignores the possible backward dependencies and enables the loop to get software
pipelined.

Example 2 shows possible forward and backward dependencies involving array a in this loop and
creating a dependency cycle. With | VDEP, the backward dependencies are ignored, reducing
the recurrence Il.

| VDEP has options: | VDEP: LOOP and | VDEP: BACK. The | VDEP: LOOP option implies
no loop-carried dependencies. The | VDEP: BACK option implies no backward dependencies.

The | VDEP directive is also used for Itanium(TM)-based applications.

For more details on the | VDEP directive, see Appendix A in the Intel® Fortran Programmer's
Reference.

Overriding Vectorizer's Efficiency Heuristics

In addition to | VDEP directive, there are three directives that can be used to override the
efficiency heuristics of the vectorizer:

! DI REBVECTOR ALWAYS
I DI RBVECTOR AL| GNED
I DI RSVECTOR UNALI GNED

The VECTOR ALWAYS Directive

The VECTOR ALWAYS directive can be used to override the default behavior of the compiler in
the following situation. Vectorization of non-unit stride references usually does not exhibit any
speedup, so the compiler defaults to not vectorizing loops that have a large number of non-unit
stride references (compared to the number of unit stride references). The following loop has two
references with St ri de 2. Vectorization would be disabled by default, but the directive
overrides this behavior.

Vector Aligned

I DI R$ VECTOR ALWAYS
doi =1, 100, 2
a(i) = b(i)

enddo

The VECTOR ALIGNED/UNALIGNED Directives

Like VECTOR ALWAYS, these directives also override the efficiency heuristics. The difference
is that the qualifiers UNALI GNED and ALI GNED instruct the compiler to use, respectively,
unaligned and aligned data movement instructions for all array references. This disables all the
advanced alignment optimizations of the compiler, such as determining alignment properties from
the program context or using dynamic loop peeling to make references aligned.

f) Note

The directives VECTOR [ALWAYS, UNALI GNED, ALI GNED] should be used
with care. Overriding the efficiency heuristics of the compiler should only be done if the
programmer is absolutely sure the vectorization will improve performance. Furthermore,

163

instructing the compiler to implement all array references with aligned data movement
instructions will cause a runtime exception in case some of the access patterns are actually
unaligned.

The NOVECTOR Directive

If, on the other hand, avoiding vectorization of a loop is more reasonable than using it (if
vectorization results in a performance regression rather than improvement), the NOVECTOR
directive can be used in the source text to disable vectorization of a loop. For instance, the Intel®
Compiler vectorizes the following example loop by default. If this behavior is not desired, the
NOVECTOR directive can be used, as shown in the example that follows.

NOVECTOR
I DI R$ NOVECTOR
doi =1, 100
a(i) = b(i) + c(i)
enddo

Vectorization Examples
This section contains simple examples of some common issues in vector programming.

Argument Aliasing: A Vector Copy

The loop in the example of a vector copy operation does not vectorize because the compiler
cannot prove that DEST(A(1)) and DEST(B(1)) are distinct.

Unvectorizable Copy Due to Unproven
Distinction

SUBROUTI NE
VEC COPY(DEST, A, B, LEN)
DI MENSI ON DEST(*)
| NTEGER A(*), B(*)
| NTEGER LEN, |
DO | =1, LEN
DEST(A(1)) = DEST(B(I))
END DO
RETURN
END

Data Alignment

A 16-byte or greater data structure or array should be aligned so that the beginning of each
structure or array element is aligned in a way that its base address is a multiple of 16.

The Misaligned Data Crossing 16-Byte Boundary figure shows the effect of a data cache unit
(DCU) split due to misaligned data. The code loads the misaligned data across a 16-byte
boundary, which results in an additional memory access causing a six- to twelve-cycle stall. You
can avoid the stalls if you know that the data is aligned and you specify to assume alignment

164

Misaligned Data Crossing 16-Byte
Boundary

16 Byte 16 Byte

|‘Buundaries + Boundarias)'

Misaligned Data

After vectorization, the loop is executed as shown in figure below.
Vector and Scalar Clean-up lterations

2 vactor ilerations 2 clean-up it¢
in =calar mog
~ll} i sl ——f=-
i=1.2.3.4 i=56,7,8 =910

Both the vector iterations A(1: 4) = B(1:4);and A(5:8) = B(5: 8);canbe
implemented with aligned moves if both the elements A(1) and B(1) are 16-byte aligned.

&Caution

If you specify the vectorizer with incorrect alignment options, the compiler will generate
unexpected behavior. Specifically, using aligned moves on unaligned data, will result in an
illegal instruction exception!

Alignment Strategy

The compiler has at its disposal several alignment strategies in case the alignment of data
structures is not known at compile-time. A simple example is shown below (several other
strategies are supported as well). If in the loop shown below the alignment of A is unknown, the
compiler will generate a prelude loop that iterates until the array reference, that occurs the most,
hits an aligned address. This makes the alignment properties of A known, and the vector loop is
optimized accordingly. In this case, the vectorizer applies dynamic loop peeling, a specific Intel®
Fortran feature.

Data Alignment Example
Original loop:

SUBROUTI NE DA T(A)
REAL A(100) I alignnment of argunment A is unknown
DOI =1, 100
A(l) = A(l) + 1.0
ENDDO

END SUBROUTI NE

Aligning Data
I The vectorizer will apply dynam c | oop peeling as
fol |l ows:

SUBROUTI NE DO T(A)

REAL A(100)

| let P be (A%6)where A is address of A(1)

165

P) /4 I determne runtine peeling factor

| oop starts at a 16-byte boundary,
be vectorized accordingly
1, 100

END SUBROUTI NE

Loop Interchange and Subscripts: Matrix Multiply

Matrix multiplication is commonly written as shown in the following example.

DO 1=1, N
DO J=1, N
DO K=1, N
c(l,J) =
END DO
END DO
END DO

C(1,J) + A(l, K *B(K, J)

The use of B(K, J) ,isnota st ri de- 1 reference and therefore will not normally be

vectorizable. If the loops are interchanged, however, all the references will become st ri de- 1

as in the Matrix Multiplication with Stride-1 example that follows.

FINote

Interchanging is not always possible because of dependencies, which can lead to different

results.
Matrix Multiplication with Stride-1

DO J=1, N
DO K=1, N
DO | =1, N
c(1,3) = C(1,3) + A(l, K *B(K, J)
ENDDO
ENDDO
ENDDO

For additional information, see Publications on Compiler Optimizations.

166

Optimizer Report Generation
(Itanium(TM) Compiler)

The Intel® Fortran Itanium(TM) Compiler for Itanium(TM)-based Applications provides options to
generate and manage optimization reports.

- Opt _r eport generates optimizations report and places it in a file specified in

-opt _report _filefilename.If-opt _report fil eisnot specified, -

opt _report directsthe report to St der r . The default is OFF: no reports are generated.
-opt _report _filefil enamne generates optimizations report and directs it to a file
specified in fi | ename.

-opt _report | evel {m n| med| max} specifies the detail level of the optimizations
report. The M N argument provides the minimal summary and the Max the full report. The
defaultis- opt _report | evel m n.

-opt _report _routineroutine_substri ng generates reports from all routines
with names containing the SUbSt r i ng as part of their name. If not specified, reports from all
routines are generated. The default is to generate reports for all routines being compiled.

Specifying Optimizations to Generate Reports

The compiler can generate reports for an optimizer you specify in the phase argument of the
-opt _report _phasephase option.

The option can be used multiple times on the same command line to generate reports for multiple

optimizers.

Currently, the following optimizer reports are supported:

Optimizer Logical Optimizer Full Name

Name

i po Interprocedural Optimizer

hl o High Level Optimizer

ilo Intermediate Language Scalar
Optimizer

ecg Electron Code Generator

onp Open MP

al | All optimizers

When one of the above logical names for optimizers are specified all reports from that optimizer
will be generated. For example, - opt _report phasei po and

- opt _report _phaseecq generate reports from the interprocedural optimizer and the
code generator.

Each of the optimizers can potentially have specific optimizations within them. Each of these
optimizations are prefixed with one of the optimizer logical names. For example:

Optimizer_optimization Full Name

Interprocedural Optimizer, inline expansion
of functions

i po_inline

167

I po_const ant _propagati on

Interprocedural Optimizer, constant
propagation

i po_function_reoder

Interprocedural Optimizer, function reorder

il o_constant _propagation

Intermediate Language Scalar Optimizer,
constant propagation

il o_copy_propagation

Intermediate Language Scalar Optimizer,
copy propagation

ecg_software_pi pelining

Electron Code Generator, software
pipelining

The entire name for a particular optimization within an optimizer need not be specified in full, just

a few characters is sufficient. All optimization reports that have a matching pref!x with the
specified optimizer are generated. For example, if - opt _report phase il o _cois

specified, a report from both the constant propagation and the copy propagation are generated.

The Availability of Report Generation

The - opt _report hel p option lists the logical names of optimizers that are currently

availble for report generation.

168

Libraries

Managing Libraries

You can determine the libraries for your applications by controlling the linker or by using the
options described in this section. See library options summary.
The LD LI BRARY _PATH environment variable contains a colon-separated list of directories
that the linker will search for library (. @) files. If you want the linker to search additional libraries,
you can add their names to the command line, to a response file, or to the configuration (. Cf g)
file. In each case, the names of these libraries are passed to the linker before these libraries:
= the libraries provided with the Intel® Fortran Compiler (I i bCEPCF90. a,
i bl EPCF90. a,libintrins.a,libF90. a, and the math library: | i bi nf . a for
both 1A-32 compiler and | i bm a for Itanium(TM) compiler; | i bm a is the math library
provided with the gcc*)
= the default libraries that the compiler command always specifies are:

The ones marked with an "*" are provided by Intel.
For more information on response and configuration files, see Response Files and Configuration
Files.
The linker uses the LD LI BRARY PATH variable to search for libraries. If you are compiling
with a linker option that forces static libraries, it will look for those at compile time. Otherwise, it
will look for shared libraries at runtime.
To specify a library name on the command line, you must first add the library's path to the
LD LI BRARY PATH environment variable. Then, to compile f i | €. f and link it with the
library | i bm ne. a, for example, enter the following command:

IA-32 applications:

pronmpt>ifc file.f -Imne
Itanium(TM)-based applications:
pronpt>efc file.f -1 mne

The example above implies that the library resides in your path.

The Order of Passing the Files to Linker

The compiler passes files to the linker in the following order:
1. Object files and libraries are passed to the linker in the order specified on the command line.
2. Object files and libraries in the . cf g file will be processed before those on the command line.

This means that putting library names in the . Cf g file does not make much sense because the
libraries will be processed before most object files are seen.

169

3.Thelibinf.a,libF90.a,libintrins.a,and!l i bl EPCF90. a libraries.
4. Thel i bm a libary is linked in just before | 1 bc. a, then| | bc. a libraries.

See the list of libraries that are installed with the Intel® Fortran Compiler for IA-32 applications
and for Itanium(TM)-based applications.

Using the POSIX and Portability
Libraries

Use the - posi x| i b option with the compiler to invoke the POSIX bindings library

| i bposf 90. a. For a complete list of these functions see Chapter 3, "POSIX Functions" in the
Intel® Fortran Libraries Reference Manual.

Use the - Vax| i b option with the compiler to invoke the VAX* compatibility functions

| i bpepcf 90. a. This also brings in the Intel’s compatibility functions for Sun* and Microsoft*.
For a complete list of these functions see Chapter 2, "Portability Functions" in the Intel® Fortran
Libraries Reference Manual.

Intel® Shared Libraries

The Intel® Fortran Compiler (both 1A-32 and Itanium(TM) compilers) links the libraries statically at
link time and dynamically at the run time, the latter as dynamically-shared objects (DSO).

By default, the libraries are linked as follows:

= Fortran, math and | i bcprt s. a libraries are linked at link time, that is, statically.
= | i bcxa. soislinked dynamically to conform to C++ ABI.

= GNU and Linux system libraries are linked dynamically.

Advantages of This Approach

This approach

= Enables to maintain the same model for both 1A-32 and Itanium compilers.

= Provides a model consistent with the Linux model where system libraries are dynamic and
application libraries are static.

= The users have the option of using dynamic versions of our libraries to reduce the size of
their binaries if desired.

= The users are licensed to distribute Intel-provided libraries.

The libraries | i bcprts. aandl i bcxa. so are C++ language support libraries used by

Fortran when Fortran includes code written in C++.

Shared Library Options

The main options used with shared libraries are - i _dynam ¢ and - shar ed.

The -1 _dynam c compiler option directs the linker to use the shared object versions of the
Intel-provided libraries dynamically. The comparison of the following commands illustrates the
effects of this option.

1. pronpt >i f ¢ myprog. f

This command produces the following results (default):

= Fortran, math, | i bi rc. a,and| i bcprts. a libraries are linked statically (at link time).
» Dynamic version of | i bcxa. so is linked at run time.

The statically linked libraries increase the size of the application binary, but do not need to be
installed on the systems where the application runs.

170

2.prompt>ifc -i_dynam c nyprog.f

This command links all of the above libraries dynamically. This has the advantage of reducing the
size of the application binary, but it requires all the dynamic versions installed on the systems
where the application runs.

The - shar ed option instructs the compiler to build a Dynamic Shared Object (DSO) instead of
an executable. For more details, refer to the | d man page documentation.

Inline Expansion of Library Functions

By default, the compiler automatically expands (inlines) a number of standard and math library
functions at the point of the call to that function, which usually results in faster computation.
However, the inlined library functions do not set the €r r N0 variable when being expanded
inline. In code that relies upon the setting of the €r r N0 variable, you should use the

-nol i b_i nl i ne option. Also, if one of your functions has the same name as one of the
compiler-supplied library functions, then when this function is called, the compiler assumes that
the call is to the library function and replaces the call with an inlined version of the library function.
So, if the program defines a function with the same name as one of the known library routines,
you must use the - nol i b_1 nl I ne option to ensure that the user-supplied function is used.
-nol i b_i nl i ne disables inlining of all intrinsics.

Your results can vary slightly using the preceding optimizations.

f) Note

Automatic inline expansion of library functions is not related to the inline expansion that
the compiler does during interprocedural optimizations. For example, the following
command compiles the program sum f without expanding the math library functions:

IA-32 applications:

pronpt>ifc -ip -nolib_inline sumf
Itanium(TM)-based applications:

pronpt>efc -ip -nolib_inline sumf

For information on the Intel-provided intrinsic functions, see Additional Intrinsic Functions in the
Reference section.

Math Libraries

Math Libraries Overview

The | i bi nf. a is the math library provided by Intel and | i bm a is the math library provided
with gcc*. Both of these libraries are linked in by default on 1A-32 and Itanium(TM) compilers.
Both libraries are linked in because there are math functions supported by the GNU math library
that are not in the Intel math library. This linking arrangement allows for all functions GNU users
have available to them to be available when using i f ¢ (or ef ¢), with Intel optimized versions
available when supported. | i bi nf . ais linked in before | i bm a. If youlinkin| i bm a first,
it will change the versions of the math functions that are used.

It is recommended that you place | i bi nf. aand| i bm a in the first directory specified in the
LD LI BRARY PATHyvariable. The | i bi nf. aand| i bm a libraries are always linked
with Fortran programs.

For example, if you place a library in directory / per f or ml , setthe LD LI BRARY _PATH
variable to specify a list of directories, containing all other libraries, separated by semicolons.

For IA-32 Compiler, | i bm a contains both generic math routines and versions of the math

171

routines optimized for special use with the Intel® Pentium® 4 and Xeon(TM) processors. For
Itanium(TM) Compiler, libm.a is optimized for for the use with Itanium architecture.

Using Math Libraries with |A-32 Systems

Most of the routinesin | i bm a for 1A-32 have been optimized for special use with the Intel®
Pentium® 4 and Xeon(TM) processors. Generic versions are used when running on an I1A-32
processor generation prior to Pentium 4 processor family.

To use your own version of the standard math functions without unresolved external errors, you
must disable the automatic inline expansion by compiling your program with the

-nol i b_i nl i ne option, as described in Inline Expansion of Library Functions.

& Caution

A change of the default precision control or rounding mode (for example, by using the
- pc 32 flag or by user intervention) may affect the results returned by some of the
mathematical functions.

Optimized Math Library Primitives

The optimized math libraries contain a package of functions, called primitives. The Intel Fortran
Compiler calls these functions to implement numerous floating-point intrinsics and exponentiation.
About half of the functions in the library from Intel are written in assembly language and optimized
for program execution speed on an IA-32 architecture processor.

FINote

The library primitives are not Fortran intrinsics. They are standard library calls used by the
compiler to implement Intel Fortran language features.

Following is a list of math library primitives that have been optimized.
acos cos | 0910 si nh
asin cosh pow sqrt
at an exp powf tan
at an2 | og sin t anh

The math library also provides the following non-optimized primitives.

acosh copysi gn |f nod gama

asi nh erf f nodf remai nder
at anh f abs hypot rint

cbrt f absf j0 yO0

ceil fl oor j1 yl

ceilf fl oorf jn y2

172

Programming with Math Library Primitives

Primitives adhere to standard calling conventions, thus you can call them with other high-level
languages as well as with assembly language. For Intel Fortran Compiler programs, specify the
appropriate Fortran intrinsic name for arguments of type REAL and DOUBLE PRECI SI ON.
The compiler calls the appropriate single- or double-precision primitive based on the type of the
argument you specify.

To use these functions, you have to write an | NTERFACE block that specifies the ALI AS
name of the function. The routine names in the math library are lower case.

IEEE Floating-point Exceptions

The compiler recognizes a set of floating-point exceptions required for compatibility with the IEEE
numeric floating-point standard. The following floating-point exceptions are supported during
numeric processing:

Denormal One of the floating-point operands has an absolute
value that is too small to represent with full precision
in the significand.

Zero Divide The dividend is finite and the divisor is zero, but the
correct answer has infinite magnitude.

Overflow The resulting floating-point number is too large to
represent.

Underflow The resulting floating-point number (which is very

close to zero) has an absolute value that is too small
to represent even if a loss of precision is permitted in
the significand (gradual underflow).

Inexact The resulting number is not represented exactly due
(Precision) to rounding or gradual underflow.

Invalid operation [Covers cases not covered by other exceptions. An
invalid operation produces a quiet NaN (Not-a-
Number).

Denormal

The denormal exception occurs if one or more of the operands is a denormal number. This
exception is never regarded as an error.

Divide-by-Zero Exception

A divide-by-zero exception occurs for a floating-point division operation if the divisor is zero and
the dividend is finite and non-zero. It also occurs for other operations in which the operands are
finite and the correct answer is infinite.

When the divide by zero exception is masked, the result is +/-infinity. The following specific cases
cause a zero-divide exception:

= LOF0.0)

= LOGLO(0.0)

= O O**Xx, where X is a negative number

For the value of the flags, refer to the i eee_f | ags() function in your library manual and
Pentium® Processor Family Developer's Manual, Volumes 1, 2, and 3.

173

Overflow Exception

An overflow exception occurs if the rounded result of a floating-point operation contains an
exponent larger than the numeric processing unit can represent. A calculation with an infinite
input number is not sufficient to cause an exception.

When the overflow exception is masked, the calculated result is +/-infinity or the +/-largest
representable normal number depending on rounding mode. When the exception is not masked,
a result with an accurate significand and a wrapped exponent is available to an exception
handler.

Underflow Exception

The underflow exception occurs if the rounded result has an exponent that is too small to be
represented using the floating-point format of the result.

If the underflow exception is masked, the result is represented by the smallest normal number, a
denormal number, or zero. When the exception is not masked, a result with an accurate
significand and a wrapped exponent is available to an exception handler

Inexact Exception

The inexact exception occurs if the rounded result of an operation is not equal to the unrounded
result.

It is important that the inexact exception remain masked at all times because many of the numeric
library procedures return with an undefined precision exception flag. If the precision exception is
masked, no special action is performed. When this exception is not masked, the rounded result is
available to an exception handler.

Invalid Operation Exception

An invalid operation indicates that an exceptional condition not covered by one of the other
exceptions has occurred. An invalid operation can be caused by any of the following situations:

= One or more of the operands is a signaling NaN or is in an unsupported format.
= One of the following invalid operations has been requested:

t(#:5)0.0-(+:2)0.0, (+:-)0.0%(#=-)e, oOr (#--)-(+--)-

= The function | NT, NI NT, or | Rl NT is applied to an operand that is too large to fit into the
requested | NTEGER* 2 or | NTEGER* 4 data types.

= Acomparisonof . LT.,. LE.,. GI.,or. GE. isapplied to two operands that are
unordered.

The invalid-operation exception can occur in any of the following functions:

= SQRT(X),LOE X),or LOGLO(X) , where X is less than zero.

= ASI N(x),or ACOS(x) where | x| >1.

For any of the invalid-operation exceptions, the exception handler is invoked before the top of the
stack changes, so the operands are available to the exception handler.

When invalid-operation exceptions are masked, the result of an invalid operation is a quiet NaN.

Program execution proceeds normally using the quiet NaN result.

Floating-point Result |The appearance of a quiet NaN as an operand results in a quiet NaN.
Execution continues without an error. If both operands are quiet NaNs,
the quiet NaN with the larger significand is used as the result. Thus,
each quiet NaN is propagated through later floating-point calculations
until it is ultimately ignored or referenced by an operation that delivers

174

non-floating-point results.

Formatted Output On formatted output using a real edit descriptor, the field is filled with
the "?" symbols to indicate the undefined (NaN) result. The A, Z, or B
edit descriptor results in the ASCII, hexadecimal, or binary
interpretation, respectively, of the internal representation of the NaN.
No error is signaled for output of a NaN.

Logical Result By definition, a NaN has no ordinal rank with respect to any other
operand, even itself. Tests for equality (. EQ.) and inequality (. NE.)
are the only Forrtran relational operations for which results are defined
for unordered operands. In these cases, program execution continues
without error. Any other logical operation yields an undefined result
when applied to NaNs, causing an invalid-operation error. The
masked result is unpredictable.

Integer Result Since no internal NaN representation exists for the | NTEGER data
type, an invalid-operation error is normally signaled. The masked
result is the largest-magnitude negative integer for | NTEGER* 4 or
| NTEGER* 2. An | NTEGER* 1 result is the value of an

| NTEGER* 2 intermediate result nDdul 0 256.

Intel® Fortran Compiler provides a method to control the rounding mode, exception handling and
other IEEE-related functions of the 1A-32 processors using | EEE_FLGS and

| EEE_ HANDLER library routines from the portability library. For details, see Chapter 2 in the
Intel® Fortran Libraries Reference Manual.

175

Diagnostics and Messages

Diagnostics Overview

This section describes the diagnostic messages that the Intel® Fortran Compiler produces.
These messages include various diagnostic messages for remarks, warnings, or errors. The
compiler always displays any error message, along with the erroneous source line, on the
standard error device. The messages also include the runtime diagnostics run for 1A-32 compiler
only.

The options that provide checks and diagnostic information must be specified when the program
is compiled, but they perform checks or produce information when the program is run. See
diagnostic options summary.

Runtime Diagnostics (IA-32 Compiler
Only)

Runtime Diagnostics Overview

For 1A-32 applications, the Intel® Fortran Compiler provides runtime diagnostic checks to aid
debugging. The compiler provides a set of options that identify certain conditions commonly
attributed to runtime failures.

You must specify the options when the program is compiled. However, they perform checks or
produce information when the program is run. Postmortem reports provide additional diagnostics
according to the detail you specify.

Runtime diagnostics are handled by IA-32 options only. The use of -O0 option turns any of them
off. See the runtime check options summary.

Optional Runtime Checks

Runtime checks on the use of pointers, allocatable arrays and assumed-shape arrays are made
with the runtime checks specified by the Intel® Fortran Compiler command line runtime
diagnostic options listed below. The use of any of these options disables optimization.

The optional runtime check options are as follows:

e Equivalent to: (- CA, - CB, - CS, - CU, - CV)
FNote

The - C option and its equivalents are available for IA-32
systems only.

Should be used in conjunction with - d{ n} . Generates runtime
code, which checks pointers and allocatable array references for
nil.

FNote

The run-time checks on the use of pointers, allocatable arrays
and assumed-shape arrays are made if compile-time option

- CAis selected.

176

_CB Should be used in conjunction with - d{ n} . Generates runtime
code to check that array subscript and substring references are
within declared bounds.

. CS Should be used in conjunction with - d{ n} . Generates runtime
code that checks for consistent shape of intrinsic procedure.
- CU Should be used in conjunction with - d{ n} . Generates runtime

code that causes a runtime error if variables are used without

being initialized.

oV Should be used in conjunction with - d{ n} . On entry to a
subprogram, tests the correspondence between the actual

arguments passed and the dummy arguments expected. Both

calling and called code must be compiled with - CV for the

checks to be effective.

Pointers, - CA

The selection of the - CA compile-time option has the following effect on the runtime checking of
pointers:
= The association status of a pointer is checked whenever it is referenced. Error 460 as
described in Runtime Errors will be reported at runtime if the pointer is disassociated: that is,
if the pointer is nullified, de-allocated, or it is a pointer assigned to a disassociated pointer.
= The compile-time option combination of -CA and - CU also generates code to test whether a
pointer is in the initially undefined state, that is, if it has never been associated or
disassociated or allocated. If a pointer is initially undefined then Error 461 as described in
Runtime Errors will be reported at runtime if an attempt is made to use it. No test is made for
dangling pointers (that is, pointers referencing memory locations which are no longer valid).
= The association status of pointers is not tested when the Fortran standard does not require
the pointer to be associated, that is, in the following circumstances:
- in a pointer assignment
- as an argument to the associ at ed intrinsic
- as an argument to the pr esent intrinsic
-inthe nul | i fy statement
- as an actual argument associated with a formal argument which has the pointer attribute

Allocatable Arrays

The selection of the - CA compile-time option causes code to be generated to test the allocation
status of an al | ocat abl e array whenever it is referenced, except when it is an argument to
the allocated intrinsic function. Error 459 as described in Runtime Errors will be reported at
runtime if an error is detected.

Assumed-Shape Arrays

The -CA option causes a validation check to be made, on entry to a procedure, on the definition
status of an assumed-shape array. Error 462 as described in Runtime Errors will be reported at
runtime if the array is disassociated or not allocated.

The compile-time option combination of - CA and - CU will additionally generate code to test
whether, on entry to a procedure, the array is in the initially undefined state. If so, Error 463 as
described in Runtime Errors.

177

Array Subscripts, Character Substrings, - CB

Specifying the compile-time option - CB causes a check at runtime that array subscript values,
subscript values of elements selected from an array section, and character substring references
are within bounds. Selection of the option causes code to be generated for each array or
character substring reference in the program.

At runtime the code checks that the address computed for a referenced array element is within
the address range delimited by the first element of the array and the last element of the array.
Note that this check does not ensure that each subscript in a reference to an element of a
multidimensional array or section is within bounds, only that the address of the element is within
the address range of the array.

For assumed-size arrays, only the address of the first element of the array is used in the check;
the address of the last element is unknown.

When - CB is selected, a check is also made that any character substring references are within
the bounds of the character entity referenced.

Unassigned Variables, - CU

Specifying the compile-time option -CU causes unassigned variable checking to be enabled: that

is, before an expression is evaluated at runtime, a check is normally made that any variables in

the expression have previously been assigned values. If any has not, a runtime error results.

Some variables are not unassigned-checked, even when - CU has been selected:

= Variables of type char act er

= byte,integer(1) andl ogi cal (1) variables

= Variables of derived type, when the complete variable (not individual fields) is used in the
expression

= Arguments passed to some elemental and transformational intrinsic procedures

Notes on Variables

» Variables that specify storage with al | ocat e, except those of types noted in the previous
section, will be unassigned-checked when - CU is selected.
= |f the variables in a named COVIMON block are to be unassigned-checked, - CU must be
selected, and:
- The COMMON block must be specified in one and only one BLOCK DATA program unit.
Variables in the COMMON block that are not explicitly initialized will be subject to the
unassigned check.
- No variable of the COMMON block may be initialized outside the BLOCK DATA program
unit.
= Variables in blank COMMON will be subject to the unassigned check if - CU s selected and
the blank COMMON appears in the main program unit. In this case, although the Intel®
Fortran Compiler permits blank COMMON to have different sizes in different program units,
only the variables within the extent of blank COMMON indicated in the main program unit will
be subject to the unassigned check.

Actual to Dummy Argument Correspondence, - CV

Specifying the compile-time option - CV causes checks to be carried out at runtime that actual
arguments to subprograms correspond with the dummy arguments expected. Note the following:

= Both caller and called Fortran code must be compiled with - CV (or - C). No argument
checking will be performed unless this condition is satisfied.

178

= The amount of checking performed depends upon whether the procedure call was made via
an implicit interface or an explicit interface. Irrespective of the type of interface used,
however, the following checks verify that:

- the correct number of arguments are passed.
- the type and type kinds of the actual and dummy arguments correspond.

- subroutines have been called as subroutines and that functions have been declared
with the correct type and type kind.

- dummy arrays are associated with either an array or an element of an array and not a
scalar variable or constant.

- the declared length of a dummy character argument is not greater than the declared
length of associated actual argument.

- the declared length of a character scalar function result is the same length as that
declared by the caller.

- the actual and dummy arguments of derived type correspond to the number and
types of the derived type components.

- actual arguments were not passed using the intrinsic procedures ¥REF and %/AL.

= If an implicit interface call was made, then yet another check is made whether an interface
block should have been used.

= If an explicit interface block was used, then further checks are made in addition to those
described (in the second bullet) above, to validate the interface block. These checks verify
that:

- the OPTI ONAL attribute of each dummy argument has been correctly specified by
the caller.

- the PO NTER attribute of each dummy argument has been correctly specified by
the caller.

- the declared length of a dummy pointer of type character is the same as the declared
length of the associated actual pointer of type character.

- the rank of an assumed-shape array or dummy pointer matches the rank of the
associated actual argument.

- the rank of an array-valued function or pointer-valued function has been correctly
specified by the caller.

- the declared length of a character array-valued function or a character pointer-valued
function is the same length as that declared by the caller.

Generating Diagnostic Reports
Diagnostic Report, - d{ n}

The command option - d{ N} generates the additional information required for a list of the
current values of variables to be output when certain runtime errors occur. Diagnostic reports are
generated by the following:

= input/output errors an invalid reference to a pointer or an allocatable array (if - CA option
selected)

= subscripts out of bounds (if - CB option selected)

= aninvalid array argument to an intrinsic procedure (if - CS option selected)
= use of unassigned variables (if - CU option selected)

= argument mismatch (if - CV option selected)

= invalid assigned labels

= acall to the abort routine

= certain mathematical errors reported by intrinsic procedures

» hardware detected errors

179

The Level of Output

The level of output is progressively controlled by n, as follows:

N=0 (or n omitted) Displays only the procedure name and the number
of the line at which the failure occurred.

n=1 Reports scalar variables local to program active
units.

n=2 Reports local and COVMON scalars.

n>2 Reports the first n elements of local and COVIVON

arrays and all scalars.

The appropriate error message will be output on St der r, and (if selected) a postmortem report
will be produced.

Selecting a Postmortem Report

Each scalar or array will be displayed on a separate line in a form appropriate to the type of the
variable. Thus, for example, variables of type integer will be output as integer values, and
variables of type complex will be output as complex values.

The postmortem report will not include those program units which are currently active, but which
have not been compiled with the - d{ n} option. If no active program unit has been compiled
with the - d{ n} option then no postmortem report will be produced.

FINote

Using the - d{ n} option for postmortem reports disables optimization.

Invoking a Postmortem Report

A postmortem report may be invoked by any of the following:

= an error detected as a consequence of using the - CA, -CB, -CS, -CU, -CVor-C
options

= acall on abort

= an allocation error

= aninvalid assigned label

= an input-output error

= an error reported by a mathematical procedure

= asignal generated by a program error such as illegal instruction

= an error reported by an intrinsic procedure

Postmortem Report Conventions

The following conventions are used in postmortem output:

» Avariable var declared in a module nod appears as nod. var .

= A module procedure pr oc in module nod appears as mod$pr oc.

= The fields of a variable var of derived data type are preceded by a line of the form var %

Example
In this example, the command line
prompt>ifc -CB -CU -d4 sanple.f

is used to compile the program that follows. When the program is executed, the postmortem
report (follows the program) is output, since the subscript mto array NuMmis out of bounds.

180

The Program

1 nodule arith

2 integer count

3 data count /0/

4

5 contains

6

7 subroutine add(k,p, m
8 integer nun(3),p
9

10 count = count+1
11 m = k+p

12 j = num(m

13 return
14 end subroutine

16 end nodule arith

18 program dosuns
19 wuse arith

20 type set

21 I nt eger sum product
22 end type set

23

24 type(set) ans

25

26 call add(9, 6, ans%sun
27

28 end program dosuns

The Postmortem Report

Run-Time Error 406: Array bounds exceeded

In Procedure: arith$add

Di agnostics Entered From Subroutine arith$add Line 12
] Not Assi gnhed

Kk = 9

m = 15

num = Not Assi gned, Not Assigned, Not Assigned
= 6

p =
Mbdul e arith
arith.count =1

Entered From MAIN PROGRAM Line 26

ans%

sum = 15

product = Not Assi gnhed
arith.count =1

181

Messages and Obtaining Information

Compiler Information Messages

These messages are generated by the following Intel® Fortran Compiler options:
Disabling the sign-on message

Disables the display of the compiler version (or sign-on) message.
When you sign-on, the compiler displays the following information:

| D: the unique identification number for this compiler.
X. Y. Z: the version of the compiler.

year S: the years for which the software is copyrighted.
Printing the list and brief description of the compiler driver options

You can print a list and brief description of the most useful
compiler driver options by specifying the -help option to the
compiler. To print this list, use this command:
IA-32 compiler:

pronpt>ifc -helporpronpt>ifc -?
Itanium(TM) compiler:

pronpt >efc -hel porpronpt>efc -?
Showing compiler version and driver tool commands
Displays compiler version information. Puts St r i ng in the

- nol ogo

-hel p

-Vstring .comment section of the object file.
v Shows driver tool commands and executes tools.
_dr yrun Shows driver tool commands, but does not execute tools.

Diagnostic Messages

Diagnostic messages provide syntactic and semantic information about your source text.
Syntactic information can include, for example, syntax errors and use of non-ANSI Fortran.
Semantic information includes, for example, unreachable code.

Diagnostic messages can be any of the following: command-line diagnostics, warning messages,
error messages, or catastrophic error messages.

Command-line Diagnostics

These messages report improper command-line options or arguments. If the command line
contains an unrecognized option, the compiler passes the option to the linker. If the linker still
does not recognize the option, the linker produces the diagnostic message.

Command-line error messages appear on the standard error device in the form:
driver-nane: nessage

where

dri ver - name The name of the compiler driver.

message Describes the error.

182

Command-line warning messages appear as follows:

driver-name: warning: nessage

Language Diagnostics

These messages describe diagnostics that are reported during the processing of the source file.
These diagnostics have the following format:

filenane(linenunm): type nn: nessage

Indicates the name of the source file currently
being processed. An extension to the filename
indicates the type of the source file, as follows: . f,
f 90, . f or indicate a Fortran file.

Indicates the source line where the compiler
detects the condition.

t e Indicates the severity of the diagnostic message:
yp warning, error, or Fatal error.

The number assigned to the error (or warning)
message.

Describes the diagnostic.

fil ename

[i nenum

nn

message

The following is an example of a warning message:

tantst.f(3): warning 328:"local variable": Local variable
"increnment” never used.

The compiler can also display internal error messages on the standard error device. If your
compilation produces any internal errors, contact your Intel representative. Internal error
messages are in the form:

FATAL COVPI LER ERROR: nessage

Warning Messages

These messages report valid but questionable use of the language being compiled. The compiler
displays warnings by default. You can suppress warning messages by using the - WO option.
Warnings do not stop translation or linking. Warnings do not interfere with any output files. Some
representative warning messages are:

constant truncated - precision too great
non- bl ank characters beyond colum 72 ignored

Hol lerith size exceeds that required by the context

Suppressing or Enabling Warning Messages

The warning messages report possible errors and use of non-standard features in the source file.
The following options suppress or enable warning messages.

183

Causes error and warning messages to be generated
in a terse format:
“file", line no : error nessage

-Cerrs-disables-cerrs.
Suppresses all warning messages.

-cerrs[-]

W n} Suppresses or displays all warning messages
generated by preprocessing and compilation.

N=0: suppresses all warnings

Nn=1: displays warning messages. - W1 is the default.

On a bound check violation, issues a warning instead
of an error. (This is to accommodate old FORTRAN
code, in which array bounds of dummy arguments
were frequently declared as 1.)

For example, the following command compiles newpr og. f and displays compiler errors, but
not warnings:
IA-32 compiler:

pronpt>i fc -w0 newprog. f
Itanium(TM) compiler:

pronpt >efc -w0 newprog. f

Comment Messages

These messages indicate valid but unadvisable use of the language being compiled. The
compiler displays comments by default. You can suppress comment messages with:

Suppresses all comment messages.

-cm

Comment messages do not terminate translation or linking, they do not interfere with any output
files either. Some examples of the comment messages are:

Nul I CASE const ruct
The use of a non-integer DO | oop variabl e or expression

Terminating a DO loop with a statenent other than CONTI NUE
or ENDDO

Error Messages

These messages report syntactic or semantic misuse of Fortran. The compiler always displays
error messages. Errors suppress object code for the module containing the error and prevent
linking, but they make it possible for the parsing to continue to scan for any other errors. Some
representative error messages are:

| i ne exceeds 132 characters
unbal anced parent hesi s
i nconpl ete string

184

Suppressing or Enabling Error Messages

The error conditions are reported in the various stages of the compilation and at different levels of
detail as explained below. For various groups of error messages, see Lists of Error Messages.

Enables/disables issuing of errors rather than warnings for
features that are non-standard Fortran.

Suppresses compiler output to standard error, St der r . When

- q is specified in conjunction with - bd, then only fatal error
messages are output to St der r by the binder tool provided with
the Intel® Fortran Compiler.

_d{n} Generates extra information needed to produce a list of current
variables in a diagnostic report. For more details on —d{ n} , see
Selecting a Postmortem Report, - d{ n} .

Diagnostic reports are generated by the following:
* input-output errors

= aninvalid reference to a pointer or an allocatable array (if -
CA option selected)

= subscripts out of bounds (if - CB option selected)

= aninvalid array argument to an intrinsic procedure (if - CS
option selected)

= use of unassigned variables (if - CU option selected)

= argument mismatch (if - CV option selected)

= jnvalid assigned labels

= acall to the abort routine

= certain mathematical errors reported by intrinsic procedures
» hardware detected errors

-S

-q

Fatal Errors

These messages indicate environmental problems. Fatal error conditions stop translation,
assembly, and linking. If a fatal error ends compilation, the compiler displays a termination
message on standard error output. Some representative fatal error messages are:

Disk is full, no space to wite object file
I ncorrect number of intrinsic argunents

Too many segnents, object format cannot support this many
segnment s

185

Mixing C and Fortran

Mixing C and Fortran Overview

This section discusses implementation-specific ways to call C procedures from a Fortran
program.

Naming Conventions

By default, the Fortran compiler converts function and subprogram names to lower case, and
adds a trailing underscore. The C compiler never performs case conversion. A C procedure
called from a Fortran program must, therefore, be named using the appropriate case. For
example, consider the following calls:

The C procedure must be named
CALL procnane_.
PROCNAME() -

x =f nname() The C procedure must be named f nnane__.

In the first call, any value returned by pr ocname is ignored. In the second call to a function,
f nnane must return a value.

Passing Arguments between Fortran and C
Procedures

By default, Fortran subprograms pass arguments by reference; that is, they pass a pointer to

each actual argument rather than the value of the argument. C programs, however, pass

arguments by value. Consider the following:

= When a Fortran program calls a C function, the C function’s formal arguments must be
declared as pointers to the appropriate data type.

= When a C program calls a Fortran subprogram, each actual argument must be specified
explicitly as a pointer.

Using Fortran Common Blocks from C

When C code needs to use a common block declared in Fortran, an underscore (_) must be
appended to its name, see below.

Fortran code
common / cbl ock/ a(100) real a

C code
struct acstruct {
float a[100];

extern struct acstruct cbl ock ;

186

Example

This example demonstrates defining a COMMON block in Fortran for Linux, and accessing the

values from C.

Fortran code

COWON / MYCOM A, B(100), |, C(10)
REAL(4) A
REAL(8) B
| NTEGER(4) |
COWPLEX(4) C
A=1.0
B = 2.0D0
| =4
C=(1.0,2.0)
CALL GETVAL()
END

C code

t ypedef struct conpl conpl ex;
struct conpl {

fl oat real
float inmag;
1
extern struct {
float a;
doubl e b[100];
int i;
conpl ex c[10];
} mycom;
void getval (){
printf("a = %\n", nycom. a);
printf("b[0] = %\n", mycom.Db[0]);
printf("i = %\n", nycom.i);
printf("c[1].real = %\n",mycom.c[1l].real);

penfold% ifc common.o getval.o -0 common. exe
penfol d% common. exe

a = 1.000000

b[0] = 2.000000

i =4

c[1].real = 1.000000

187

Fortran and C Scalar Arguments

Table that follows shows a simple correspondence between most types of Fortran and C data.

Fortran and C Language Declarations

Fortran C
i nteger*1 x char x;
i nteger*2 x short int x;
i nteger*4 x long int x;
i nteger Xx long int x;
i nteger*8 x | ong | ong x;
or _int64 x;
| ogical *1 x char x;
| ogi cal *2 x short int x;
| ogi cal *4x long int x;
| ogi cal x long int x;
| ogi cal *8 x | ong | ong x;
or _int64 x;
real *4 x float x;
real *8 x doubl e x;
real x float x;
real *16 No equivalent
doubl e precision x doubl e x;
compl ex X struct {float real, img;} Xx;
conpl ex*8 x struct {float real, inmg;} Xx;
conpl ex*16 x struct {double dreal, dimg;} Xx;
doubl e conpl ex X struct {double dreal, dimg;} Xx;
conpl ex(Kl ND=16) x No equivalent
character*6 x char x[6];

Example below illustrates the correspondence shown in the table above: a simple Fortran call

and its corresponding call to a C procedure. In this example the arguments to the C procedure

are declared as pointers.

Example of Passing Scalar Data Types from Fortran to C

Fortran Call

i nt eger |

i nteger*2 J

real x

doubl e precision d

| ogi cal |

call vexp(i, j, x, d, |)

C Call ed Procedure

void vexp_ (int *i, short *j, float *x,
double *d, int *I)

{

...programtext...

188

FINote

The character data or complex data do not have a simple correspondence to C types.

Passing Scalar Arguments by Value

A Fortran program compiled with the Intel® Fortran Compiler can pass scalar arguments to a C
function by value using the nonstandard built-in function %/AL. The following example shows the
Fortran code for passing a scalar argument to C and the corresponding C code.

Example of Passing Scalar Arguments from
Fortran to C

Fortran Call

i nt eger i

doubl e precision f, result,
ar gbyval ue

result=
ar gbyval ue(W/AL(1), WAL(F))
END

C Cal l ed Function
doubl e argbyvalue_(int i,double

f)
{
...programtext...
return g;

In this case, the pointers are not used in C. This method is often more convenient, particularly to
call a C function that you cannot modify, but such programs are not always portable.

FINote

Arrays, records, conpl ex data, and char act er data cannot be passed by value.

Array Arguments

The table below shows the simple correspondence between the type of the Fortran actual
argument and the type of the C procedure argument for arrays of types | NTEGER,
| NTEGER* 2, REAL, DOUBLE PRECI SI ON, and LOG CAL.

FINote

There is no simple correspondence between Fortran automatic, allocatable, adjustable, or
assumed size arrays and C arrays. Each of these types of arrays requires a Fortran array
descriptor, which is implementation-dependent.

189

Array Data Type

Fortran Type C Type

i nteger x() int x[];
integer*1l x() signed char x[];
integer*2 x() short x[];

integer*4 x()

long int X[];

i nteger*8 x()

long long X[]; or _int64

real *4 x() float x[];
real *8 x() doubl e x[];
real x() float x[];
real *16 x() No equivalent
doubl e precision x() double x[];
logical*1 x() char x[];

| ogical *2 x()

short int x[];

| ogical *4 x()

long int x[];

| ogi cal x() int x[];

| ogi cal *8 x() long long x[]; or _int64 x[I;
compl ex x() struct {float real, imag;} [X];
complex *8 x() struct {float real, imag;} [X];

complex *16 x()

struct {double dreal,dimg;} x;

doubl e conplex x()

struct { double dreal,dinmg; }

[x];

conmpl ex(KI ND=16) x()

No equivalent

FINote

Be aware that array arguments in the C procedure do not need to be declared as pointers.
Arrays are always passed as pointers.

FINote

When passing arrays between Fortran and C, be aware of the following semantic

differences:

= Fortran organizes arrays in column-major order (the first subscript, or dimension, of a
multiply-dimensioned array varies the fastest); C organizes arrays in row-major order
(the last dimension varies the fastest).

= Fortran array indices start at 1 by default; C indices start at 0. Unless you declare the
Fortran array with an explicit lower bound, the Fortran element X(1) corresponds to

the Cel enent x[0] .

Example below shows the Fortran code for passing an array argument to C and the
corresponding C code.

Example of Array Arguments in Fortran and C

Fortran Code
di mension i (100), x(150)
call array(i, 100, x, 150)

190

Correspondi ng C Code

array (i, I1size, X, Xxsize)
int i[];

float x[];

int *isize, *xsize;

{

. program t ext.

Character Types

If you pass a char act er argument to a C procedure, the called procedure must be declared
with an extra | Nt eger argument at the end of its argument list. This argument is the length of
the char act er variable.

The C type corresponding to char act er is char . Example that follows shows Fortran code
for passing a char act er type called char nac and the corresponding C procedure.

Example of Character Types Passed from Fortran
to C

Fortran Code

character*(*) cl
character*5 c2

float x

call charmac(c1, x, c2)

Correspondi ng C Procedure
charmac_ (cl, x, c2, nl, n2)
int nl, n2;
char *cl, *c2;
float *Xx;

{

. program t ext.

For the corresponding C procedure in the above example, N1 and N2 are the number of
charactersin C1 and C 2, respectively. The added arguments, N1 and N2, are passed by value,
not by reference. Since the string passed by Fortran is not null-terminated, the C procedure must
use the length passed.

Null-Terminated CHARACTER Constants

As an extension, the Intel Fortran Compiler enables you to specify null-terminated char act er
constants. You can pass a null-terminated character string to C by making the length of the
char act er variable or array element one character longer than otherwise necessary, to
provide for the null character. For example:

Fortran Code

191

PROGRAM PASSNUL L

interface

subroutine croutine (input)
I MS$attri butes alias:’ -
croutine’:: CROUTI NE
character (|l en=12) i nput

end subroutine

end interface

character (| en=12) HELLOANORLD
data HELLOWNORLD/ ' Hel l o Worl d' C/
call croutine(HELLOANDRLD)

end

Corr espondi ng C Code .
void croutine(char *input, int |en)

{
printf("%\n",input);
}

Complex Types

To pass a conpl ex ordoubl e conpl ex argument to a C procedure, declare the
corresponding argument in the C procedure as either of the two following structures, depending
on whether the actual argument is conpl ex or doubl e conpl ex:

struct { float real, imag; } *conplex;
struct { double real, inmag; } *dconpl ex;

Example below shows Fortran code for passing a complex type called compl and the
corresponding C procedure.

Example of Complex Types Passed from Fortran
to C

Fortran Code
doubl e conpl ex dc
conplex ¢
call conmpl (dc, c)

Correspondi ng C Procedure
conmpl (dc, c¢)

struct { double real, imag; } *dc;
struct { float real, imag; } *c;

{

. program t ext.

192

Return Values

A Fortran subroutine is a C function with a void return type. A C procedure called as a function
must return a value whose type corresponds to the type the Fortran program expects (except for
char act er, conpl ex, and doubl e conpl ex data types). The table below shows this
correspondence.

Return Value Data Type

Fortran Type C Type

i nt eger i nt;

i nteger*1 si gned char;

i nteger*2 short;

i nteger*4 long int x;

i nteger*8 x long long x; or _int64
| ogi cal int;

| ogical *1 char;

| ogi cal *2 short;

| ogi cal *4x long int x;

| ogi cal *8 long long x; or _int64
real float;

real *r x float x;

real *8 x doubl e x;

real *16 No equivalent

doubl e precision doubl e;

Example below shows Fortran code for a return value function called cfunct and the
corresponding C routine.

Example of Returning Values from C to Fortran

Fortran code
integer iret, cfunct
iret = cfunct()

Correspondi ng C Routi ne
i nt cfunct ?)

...programtext...
return i;

}

Returning Character Data Types

If a Fortran program expects a function to return data of type char act er , the Fortran compiler
adds two additional arguments to the beginning of the called procedure’s argument list:

= The first argument is a pointer to the location where the called procedure should store the
result.

= The second is the maximum number of characters that must be returned, padded with white
spaces if necessary.

193

The called routine must copy its result through the address specified in the first argument.
Example that follows shows the Fortran code for a return character function called makechar s
and corresponding C routine.

Example of Returning Character Types from C to
Fortran

Fortran code

character*10 chars, nmkechars
doubl e precision x, y

chars = makechars(x, y)

Correspondi ng C Routi ne
voi d makechars_ (result, length, x, y);
char *result;

i nt | ength;

doubl e *x, *y;

{

... programtext, producing returnval ue...
for (i =0; 1 <length; i++) {
result[i] = returnvalueli];

}

In the above example, the following restrictions and behaviors apply:

= The function’s | engt h and r esul t do not appear in the call statement; they are added
by the compiler.

» The called routine must copy the r esul t string into the location specified by r esul t ; it
must not copy more than | engt h characters.

= If fewer than | engt h characters are returned, the return location should be padded on the
right with blanks; Fortran does not use zeros to terminate strings.

* The called procedure is type VOI d.

= You must use lowercase names for C routines or Microsoft* attributes and | NTERFACE
blocks to make the calls using uppercase.

Returning Complex Type Data

If a Fortran program expects a procedure to return a conpl ex or doubl e- conpl ex value,
the Fortran compiler adds an additional argument to the beginning of the called procedure
argument list. This additional argument is a pointer to the location where the called procedure
must store its result.

Example below shows the Fortran code for returning a complex data type procedure called
wbat and the corresponding C routine.

194

Example of Returning Complex Data Types from C
to Fortran

Fortran code
conpl ex bat, wbat
real x, vy
bat = wbat (X, y)

Correspondi ng C Routi ne

struct _nyconplex { float real, img };

t ypedef struct _myconpl ex _single_conpl ex;

void wbat _ (_single _conplex location, float *x, float *y)

{

float real part;
fl oat imagi narypart;

programtext, producing real part and
i magi narypart. . .
*| ocati on. real
*| ocation. i mg

}

real part;
| magi narypart;

In the above example, the following restrictions and behaviors apply:

= The argument location does not appear in the Fortran call; it is added by the compiler.

* The C subroutine must copy the result’s real and imaginary parts correctly into | ocat i on.
* The called procedure is type VOI d.

If the function returned a doubl e conpl ex value, the type f | oat would be replaced by
the type doubl e in the definition of | ocat i on in wbat .

Procedure Names

C language procedures or external variables can conflict with Fortran routine names if they use
the same names in lower case with a trailing underscore. For example:
Fortran Code

subrouti ne myproc(a,b)

end

C Code
void nmyproc_(float *a, float *b){

The expressions above are equivalent, but conflicting routine declarations. Linked into the same
executable, they would cause an error at link time.

Many routines in the Fortran runtime library use the naming convention of starting library routine
names with an f _ prefix. When mixing C and Fortran, it is the responsibility of the C program to
avoid names that conflict with the Fortran runtime libraries.

Similarly, Fortran library procedures also include the practice of appending an underscore to
prevent conflicts.

195

Pointers

In the Intel® Fortran Compiler implementation, pointers are represented in memory in the form
shown in the table that follows.

Pointer Representation in Intel Fortran Compiler

Pointer To:

Representation

a numeric scalar

one word representing the address of its target

a derived type
scalar

one word representing the address of its target

a character scalar

two words, the first word containing the address
of its target and the second containing its
defined length

an array

a data structure of variable size that describes
the target array; Intel reserves the right to

modify the form of this structure without notice

Calling C Pointer-type Function from

Fortran

In Intel® Fortran, the result of a C pointer-type function is passed by reference as an additional,

hidden argument. The function on the C side needs to emulate this as follows:

Calling C Pointer Function from Fortran

Fortran code
programt est

i nterface

function cpfun()

i nteger, pointer:: cpfun
end function

end interface

i nteger, pointer:: ptr
ptr => cpfun()

print*, ptr

end

C Code

#i ncl ude <mal | oc. h>
void *cpfun_(int **LP)

*LP = (int *)malloc(sizeof(int));

**LP = 1;
return LP;
}

196

The function’s result (i Nt *) is returned as a pointer to a pointer (i Nt **), and the C
function must be of type VOi d (not i nt *). The hidden argument comes at the end of the
argument list, if there are other arguments, and after the hidden lengths of any character
arguments.

In addition to pointer-type functions, the same mechanism should be used for Fortran functions of
user-defined type, since they are also returned by reference as a hidden argument. The same is
true for functions returning a derived type (St r uct ur e) or char act er if the function is
character*(*).

FINote

Calling conventions such as these are implementation-dependent and are not covered by
any language standards. Code that is using them may not be portable.

Implicit Interface

An implicit interface call is a call on a procedure in which the caller has no explicit information on
the form of the arguments expected by the procedure; all calls within a Fortran program are of
this form. All arguments passed through an implicit interface, apart from label arguments, are
passed by address.

Fortran Implicit Argument Passing by Address

Argument Address Passed

scalar the address of the scalar

array the address of the first element of the array
scalar pointer the address of its target

array pointer the address of the first element of its target
procedure the address associated with the external name

Actual arguments of type char act er are passed as a char act er descriptor, which
consists of two words, see Character Types.

Label arguments (alternate returns) are handled differently: subroutines which include one or
more alternate returns in the argument list are compiled as integer functions; these functions
return an index into a computed got 0; the caller executes these Ot Os on return. For example:

call validate(x,*10,*20, *30) isequivalentto

goto (10, 20, 30), vali date(x)

Explicit Interface

Fortran provides various mechanisms by which the declarations of the dummy arguments within
the called procedure can be made available to the caller while it is constructing the actual
argument list. An explicit interface call is one to the following:

= amodule procedure

= aninternal procedure

= an external procedure for which an interface block is provided

In this form of call the construction of the actual argument list is controlled by the declarations of
the dummy arguments, rather than by the characteristics of the actual arguments. As in an
implicit interface call, all arguments (apart from label arguments) are passed by address, but the
form of the address is controlled by attributes of the associated dummy argument, see the table
below.

197

Fortran Explicit Argument Passing by Address

Argument Address Passed

scalar the address of the scalar

assumed-shape array the address of an internal data structure which
describes the actual argument

other arrays the address of the first element of the actual
array

scalar pointer the address of the pointer

array pointer the address of an internal data structure which
describes the pointer’s target

procedure the address associated with the external name

As in an implicit interface call, arguments of type char act er are passed as a character
descriptor, described in Character Types.

Intel reserves the right to alter or modify the form of the internal data used to pass assumed-
shape arrays and pointers to arrays. It is therefore not recommended that interfaces using these
forms of argument are to be compiled with other than Intel® Fortran Compiler.

The call on an explicit interface need not associate an actual argument with a dummy argument if
the dummy argument has the opt i onal attribute. An opt i onal argument that is not
present for a particular call to a routine has a placeholder value passed instead of its address.
The place-holder value for optional arguments is always -1.

Intrinsic Functions

The normal argument passing mechanisms described in the preceding sections may sometimes
not be appropriate when calling a procedure written in C. The Intel® Fortran Compiler also
provides the intrinsic functions %REF and %VAL which may be used to modify the normal
argument passing mechanism. These intrinsics must not be used when calling a procedure
compiled by the Intel Fortran Compiler. See Additional Intrinsic Functions section.

198

Reference Information

OpenMP* Reference Information

List of OpenMP* Standard Directives and Clauses

OpenMP* Directives

Directive Description
paral | el Defines a parallel region.
do Identifies an iterative work-sharing construct that specifies a

enddo[nowai t]

region in which the iterations of the associated loop should be
executed in parallel. The argument nowali t indicates that the
loop that reached the end can proceed with further execution on
its thread. If NnOwali t is absent, all loops have to reach the end,
and only then the execution continues on all threads.

Identifies a non-iterative work-sharing constuct that specifies a set

sections of constucts that are to be divided among threads in a team.

section Indicates that the associated code block should be executed in
parallel.

singl e Identifies a construct that specifies that the associated structured

end single

block is executed by only one thread in the team.

paral |l el do,
end parall el
do

A shortcut for a par al | el region that contains a single do
directive.

ENote

The par al | el or do OpenMP directive must be immediately
followed by a do statement (dO- St nt as defined by R818 of
the ANSI Fortran standard). If you place other statement or an
OpenMP directive between the par al | el or do directive and
the do statement, the Intel® Fortran compiler issues a syntax
error.

Provides a shortcut form for specifying a parallel region containing

gg{;?! loﬁls a single sections directive.
mast er Identifies a constuct that specifies a structured block that is

end naster

executed by the mast er thread of the team.

critical[lock],

end

critical[l ock]

Identifies a construct that restricts execution of the associated
structured block to a single thread at a time.

barri er

Synchronizes all the threads in a team.

199

Ensures that a specific memory location is updated atomically.

atom ¢

£1 ush Specifies a "cross-thread" sequence point at which the
implementation is required to ensure that all the threads in a team
have a consistent view of certain objects in memory.

or der ed, The structured block following an or der ed directive is

end ordered

executed in the order in which iterations would be executed in a
sequential loop.

t hreadpri vate

Makes the named file-scope or namespace-scope variables
specified private to a thread but file-scope visible within the
thread.

OpenMP Clauses

Clause

Description

private

Declares variables to be pr i vat e to each thread in a team.

firstprivate

Provides a superset of the functionality provided by the
pri vat e clause.

| ast private

Provides a superset of the functionality provided by the
pri vat e clause.

Shares variables among all the threads in a team.

shar ed

def aul t Enables you to affect the data-scope attributes of variables.

reducti on Performs a reduction on scalar variables.

ordered. end The structured block following an ordered directive is executed in

! the order in which iterations would be executed in a sequential
order ed |
oop.

i f If| F(scal ar _| ogi cal _expressi on) clause is
present, the enclosed code block is executed in parallel only if
the scal ar _| ogi cal _expr essi on evaluates to
. TRUE. . Otherwise the code block is serialized.

schedul e Specifies how iterations of the d0 loop are divided among the
threads of the team.

copyi n Provides a mechanism to assign the same name to

t hr eadpr i vat e variables for each thread in the team
executing the parallel region.

List of OpenMP* Runtime Library Routines

The following table specifies the interface to OpenMP* runtime library routines. The names for the

routines are in user name space. The omp.h header file is provided in the include directory of

your compiler installation. There are definitions for two different locks, omp_lock_t and
omp_nest_lock_t, which are used by the functions in the table.

Function

Description

SUBRQOUTI NE

A~ ~nt nitrma + he AanadA~l niima + e

Sets the number of threads to use for
subsequent parallel regions.

200

onp_set _num_t hreads(num t hr
eads)

| NTEGER FUNCTI ON
onp_get _num t hreads()

Returns the number of threads that are being
used in the current parallel region.

| NTEGER FUNCTI ON
onp_get _max_t hreads()

Returns the maximum number of threads that
are available for parallel execution.

| NTEGER FUNCTI ON
onp_get thread_num)

Determines the unique thread number of the
thread currently executing this section of code.

| NTEGER FUNCTI ON
onp_get _num procs()

Determines the number of processors on the
current machine.

LOG CAL FUNCTI ON
onp_in_parallel()

Returns . TRUE. if called within the dynamic
extent of a parallel region executing in parallel,
otherwise returns . FALSE. .

SUBROUTI NE

onp_set _dynam c(dynam c_t hr
eads) | NTEGER
dynam c_t hr eads

Enables or disables dynamic adjustment of the
number of threads used to execute a parallel
region. If dynam c_t hr eads is non-zero,
dynamic threads are enabled. If

dynam c_t hr eads is zero, dynamic
threads are disabled.

LOG CAL FUNCTI ON
onp_get _dynam c()

Returns . TRUE. if dynamic thread adjustment
is enabled, otherwise returns . FALSE. .

SUBROUTI NE
onp_set nest ed(nest ed)
| NTEGER nest ed

Enables or disables nested parallelism. If
parameter is non-zero, enable. Default is
disabled.

LOG CAL FUNCTI ON
onp_get nested()

Determines whether nested parallelism is
currently enabled or disabled. Function returns
non-zero if nested parallelism is supported, zero
otherwise. Always returns . FALSE. in the
current version of compiler.

Initializes a unique | ock and sets | ocKk to its

SUBRQOUTI NE value

onp_init | ock(lock) |INTEGER '

| ock

SUBROUTI NE Disassociates | ock from any | ocks.

onp_destroy_| ock(| ock)
| NTEGER | ock

Forces the executing thread to wait until the

(?UBRSGJ;H :\Eck(| ock) | ock associated with | ock is available. The
Irrpl\l'_I'EGEﬁ | ock thread is granted ownership of the | 0ck when it
becomes available.
SUBROUTI NE Releases executing thread from ownership of

onp_unset | ock(| ock)

LA D |

| ock associated with | ock. The | ock
argument must be initialized via

201

| NTEGER | ock

onp_init | ock(),andbehavior
undefined if executing thread does not own the
| ock associated with | ock.

| NTEGER onp_test | ock(l ock)

Attempts to set | ock associated with | ock. If
successful, returns non-zero. | ock must be
initialized viaonp_i ni t _| ock(| ock).

SUBROUTI NE
onp_init_nest | ock(l ock)
| NTEGER | ock

Initializes a unique nested | ock and sets
| ock to its value.

SUBROUTI NE
onp_destroy_nest | ock(| ock)
| NTEGER | ock

Disassociates the nested lock "l ock" from any
| ocks.

SUBROUTI NE
onp_set _nest | ock(Il ock)
| NTEGER | ock

Forces the executing thread to wait until the

| ock associated with | ock is available. The
thread is granted ownership of the | 0ck when it
becomes available.

SUBROUTI NE
onp_unset _nest | ock(Il ock)
| NTEGER | ock

Releases executing thread from ownership of

| ock associated with | ocK if count is zero.

| ock must be initialized via
onp_init_nest | ock().Behavioris
undefined if executing thread does not own the
| ock associated with | ock.

| NTEGER
onp_test _nest | ock(l ock)

Attempts to set | ock associated with | ock. If
successful, returns nesting count, otherwise
returns zero. | 0CK must be initialized via

onp_init_Iock().

Compiler Limits

Maximum Size and Number

The table below shows the size or number of each item that the Intel® Fortran Compiler can
process. All capacities shown in the table are tested values; the actual number can be greater

than the number shown.

Item Tested Values
Maximum nesting of interface blocks 10

Maximum nesting of input/output implied DOs |20

Maximum nesting of array constructor implied |20

DCs

Maximum nesting of include files 10

Maximum length of a character constant 32767

Maximum Hollerith length 4096

202

Maximum number of digits in a numeric 1024
constant

Maximum nesting of parenthesized formats 20

Maximum nesting of DO, | F or CASE constructs [100

Maximum number of arguments to M N and MAX|255

Maximum number of parameters 256

Maximum number of continuation lines in fixed {99
or free form

Maximum width field for a numeric edit 1024
descriptor

Additional Intrinsic Functions

Additional Intrinsic Functions Overview

The Intel® Fortran Compiler provides a few additional generic functions, and adds specific names
to standard generic functions (in particular, to accommodate DOUBLE COVPLEX arguments).
Some specific names are synonyms to standard names.

FINote

Many intrinsics listed in this section are handled as library calls. Not all the functions that
are listed in the sections that follow can be inlined.

Synonyms

The Intel® Fortran provides synonyms for standard Fortran intrinsic names. They are given in the
right-hand columns.

Standard Intel Fortran Standard Intel Fortran
Name Synonym Name Synonym
DBLE DREAL DA TS EPPREC

| AND AND M NEXPONENT EPEM N

| EOR XOR MAXEXPONENT EPENMAX

| OR OR HUGE EPHUGE

RADI X EPBASE EPSI LON EPVRSP

Note that the Fortran standard intrinsic TI NY and the Intel additional intrinsic EPTI NY are not
synonyms. Tl NY returns the smallest positive normalized value appropriate to the type of its
argument, whereas EPTI NY returns the smallest positive denormalized value.

DCMPLX Function

The DCMPL X function must satisfy the following conditions:

= If X is of type DOUBLE COVPLEX, then DCMPLX(X) is X.

= If X isof type | NTEGER, REAL, or DOUBLE PRECI SI ON, then DCMPLX(X) is
DBLE(x) + Oi

= |f X1 and X2 are of type | NTEGER, REAL or DOUBLE PRECI SI ON, then
DCWPLX(x1, x2) isDBLE(x1) + DBLE(x2) * i

= |f DCMPLX has two arguments, then they must be of the same type, which must be

203

| NTEGER, REAL or DOUBLE PRECI SI ON.

= |f DCMPLX has one argument, then it may be | NTEGER, REAL or DOUBLE
PRECI SI ON, COMPLEX or DOUBLE COMPLEX.

LOC Function

The LOC function returns the address of a variable or of an external procedure.

Argument and Result KIND Parameters

The following extensions to standard Fortran are provided:

= References to the following intrinsic functions return | NTEGER(KI ND=2) results when
compile-time option - | 2 or - i 2 is specified: | NT, | DI NT, NI NT, | DNI NT, | FI X,
MAX1, M NL.

= The following specific intrinsic functions may be given arguments of type
| NTEGER(KI ND=2) : | ABS, FLOAT, MAX0, AVAX0, M NO, AM NO, | DI M
I SI G\

= References to the following intrinsic functions return | NTEGER(KI ND=8) : results when
compile-time option - | 2 or - i 2 is specified: | NT, | DI NT, NI NT, | DNI NT, | FI X,
MAX1, M NL.

= The following specific intrinsic functions may be given arguments of type
| NTEGER(KI ND=8) : | ABS, FLOAT, MAX0, AVAX0, M NO, AM NO, | DI M
I SI G\

= References to the following specific intrinsic functions return REAL (KI ND=8) results when
compile-time option - r 8 is specified: ALOG ALOG10, AVAX1, AM N1, AMOD, MAX1,
M N1, SNGL, REAL.

= References to the following specific intrinsic functions return results of type
COVPLEX(KI ND=8) , that is the real and imaginary parts are each of 8 bytes, when
compile-time option - I 8 is specified: CABS, CCOS, CEXP, CLOG, CSI N, CSQRT,
CMPLX.

Intel® Fortran Kl ND Parameters

Each intrinsic data type (I NTEGER, REAL, COVPLEX, LOG CAL and CHARACTER) has a
Kl ND parameter associated with it. The actual values which the KI ND parameter for each
intrinsic type can take are implementation-dependent. The Fortran standard specifies that these
values must be | NTEGER, that there must be at least two REAL Kl NDs and two COVPLEX
Kl NDs (corresponding in each case to default REAL and DOUBLE PRECI S| ON), and that
there must be at least one KI ND for each of the | NTEGER, CHARACTER and LOE CAL
data types.

| NTEGER KI ND values

KI ND=1 1-byte | NTEGER
KI ND=2 2-byte | NTEGER
KI ND=4 4-byte | NTEGER default KI ND
KI ND=8 8-byte | NTEGER

REAL KI NDvalues

Kl ND=4 4-byte REAL default KI ND
Kl ND=8 8-byte REAL equivalent to DOUBLE PRECI SI ON
Kl ND=16 16-byte REAL

204

COVPLEX Kl NDvalues

Kl ND=4 4-byte REAL & imaginary parts default KI ND
Kl ND=8 8-byte REAL & imaginary parts equivalent to DOUBLE COVPLEX
Kl ND=16 16-byte REAL and imaginary parts equivalent to COMPLEX*32

LOGE CAL Kl NDvalues

KI ND=1 1-byte LOG CAL
KI ND=2 2-byte LOG CAL
Kl ND=4 4-byte LOG CAL default KI ND
KI ND=8 8-byte LOG CAL

CHARACTER KI NDvalue

Kl ND=1 1-byte CHARACTER default KI ND
Except for COVWPLEX, the KI ND numbers match the size of the type in bytes. For COVPLEX the
Kl ND number is the KI ND number of the REAL or imaginary part.

An include file (f 90_ki nds. f 90) providing symbolic definitions, for use when defining KI NDtype
parameters, is included as part of the standard Intel® Fortran release.

OU8REF and %/AL Intrinsic Functions

Intel® Fortran provides two additional intrinsic functions, %6REF and %/AL, that can be used to
specify how actual arguments are to be passed in a procedure call. They should not be used in
references to other Fortran procedures, but may be required when referencing a procedure
written in another programming language such as C.

0 Specifies that the actual argument X is to be passed as a reference
YREF(X) : L

to its value. This is how Intel Fortran normally passes arguments
except those of type character. For each character value that is
passed as an actual argument, Intel Fortran normally passes both
the address of the argument and its length (with the length being
appended on to the end of the actual argument list as a hidden
argument. Passing a character argument using YREF does not
pass the hidden length argument.

WAL (X) Specifies that the value of the actual argument X is to be passed to
the called procedure rather than the traditional mechanism
employed by Fortran where the address of the argument is passed.

In general, /AL passes its argument as a 32-bit, sign extended, value with the following
exceptions: the argument cannot be an array, a procedure name, a multibyte Hollerith constant,
or a character variable (unless its size is explicitly declared to be 1).

In addition, the following conditions apply:

= |f the argument is a derived type scalar, then a copy of the argument is generated and the
address of the copy is passed to the called procedure.

= An argument of complex type will be viewed as a derived-type containing two fields - a real
part and an imaginary part, and is therefore passed in manner similar to derived-type scalars.

= An argument that is a double-precision real will be passed as a 64-bit floating-point value.

This behavior is compatible with the normal argument passing mechanism of the C programming
language, and it is to pass a Fortran argument to a procedure written in C where %/AL is
typically used.

205

The intrinsic procedures YREF and %/AL can only be used in each explicit interface block, or in
the actual CALL statement or function reference as shown in the example that follows.

Calling Intrinsic Procedures
PROGRAM FOOBAR

| NTERFACE
SUBROUTI NE FRED(%/AL(X))
| NTEGER :: X

END SUBROUTI NE FRED

FUNCTI ON FOO(%REF(| P))
INTEGER :: IP, FOO

END FUNCTI ON FOO

END | NTERFACE

CALL FRED(I) ! The value of | is passed to
FRED
J = FOO(1) I | passed to FOO by reference,

I FOO receives a reference to
I the value of I.
END PROGRAM

Al ternatively:
PROGRAM FOOBAR

| NTEGER :: FQOO
EXTERNAL FOO, FRED
CALL fred(%AL(1))
J = FOO(%REF(1))
END PROGRAM

List of Additional Intrinsic Functions

To understand the tabular list of additional intrinsic functions that follows after these notes, take
into consideration the following:

= Specific names are only included in the Additional Intrinsic Functions table if they are not part
of standard Fortran.

= Anintrinsic that takes an integer argument accepts either | NTEGER(KI ND=2) or
| NTEGER(KI ND=4) or | NTEGER(KI ND=8) .

* The abbreviation "doubl e" stands for DOUBLE PRECI S| ON.

= The abbreviation "dconpl ex" stands for DOUBLE COVPLEX. Dconpl ex type is an
Intel® Fortran extension, as are all intrinsic functions taking dcomplex arguments or returning
dconpl ex results.

= If an intrinsic function has more than one argument, then they must all be of the same type.

= |f a function name is used as an actual argument, then it must be a specific name, not a
generic name.

= |f a function name is used as a dummy argument, then it does not identify an intrinsic function
in the subprogram, but has a data type according to the normal rules for variables and arrays.

206

Additional Intrinsic Functions

Intrinsic | Definition |Generic |Specific [No. of |Type of |Type of
Function Name Name |Args |Args Function
Type Conversion to DREAL 1 real real
conversion |double precision real*16 real*16
See Note 1 doubl double
complex*32 |complex*32
integer*2 |real*8
DELOAT 1 integer*4 |real*8
integer*8 |real*8
integer*2 |complex*16
integer*4 | complex*16
integer*8 | complex*16
real*4 complex*16
Conversion to doy real*8 complex*16
complexSee Note real*16 complex*16
DCMPLX 1lor?2 real*16 complex*16
complex*8 | complex*16
complex*16| complex*16
complex*32| complex*16
complex*32| complex*32
ZABS dcomplex |double
CDABS dcomplex | double
Absolute TABS real real
value IX| ABS DABS |1 double double
QABS real*16 real*16
complex*32| complex*32
Imaginary DIMAG dcomplex |double
part of a dcomplex | double
complex Xi IMAG CDIMAG |1 real real
argument TIMAG real*16 real*16
QIMAG complex*32| complex*32
Conjugate of DCONJ dcomplex |double
a complex GTCONJ real real
argument of |(xy, -xij) CONJG DCONJ |1 double double
a complex QCONJ complex*32| complex*32
argument
ZSQRT dcomplex |dcomplex
Square root SQORT dcomplex | dcomplex
Px SQRT TSQRT |1 real real
DSQRT real*16 real*16
ZEXP dcomplex |dcomplex
CDEX dcomplex | dcomplex
Exponential |ex EXP TEXP 1 real real
QEXP double double
DEXP real*16 complex*32
double double
ZLOG dcomplex |dcomplex
Natural CDLOG dcomplex | dcomplex
Logarithm |loge(x) LOG DLOG |1 real*16 double
QLOG real*16 real*16
complex*32| complex*32

207

Bitwise AND AND integer integer
Operation
See Note 1 [OR OR integer integer
Exclusive OR XOR integer integer
Shift left: x1 logica LSHIFT integer integer
shifted left x2 bits.
must be > 0
Shift right: x1 logi¢ RSHIFT integer integer
shifted right x2 bits
must be > 0
Environ- real integer
mental Base of number double integer
Inquiries. systems EPBASE real*16 integer
See Note 1 real*16 integer
complex*32| complex*32
Number of Signifi¢ real integer
Bits double integer
EPPREC real*16 integer
real*16 integer
complex*32| integer
real integer
double integer
Minimum Exponen EPEMIN real*16 integer
real*16 integer
complex*32| integer
real integer
Maximum double integer
Exponent EPEMAX real*16 integer
real*16 integer
complex*32| integer
real real
double double
Smallest non-zero EPTINY real*16 real*16
number double double
complex*32| double
integer integer
real real
Largest Number EPHUG double double
Representable E real*16 real*16
double double
complex*32| double
real real
double double
Epsilon EPMRS real*16 real*16
p double double
complex*32 complex*32
Location Address of LOC any integer
See Note 3
ZSIN dcomplex |dcomplex
Sine sin(x) SIN SIND real*16 real*16
SIND DSIND double double
QSIND real*16 real*16

208

complex*32| complex*32
ZCOSs dcomplex |dcomplex
CDCOS dcomplex | dcomplex
Cosine cos(x) cos COSD |1 real real
COSD DCOSD double double
QCOsD real*16 real*16
complex*32| complex*32
TAND real real
Tangent tan(x) TAND DTAND double double
QTAND |1 real*16 real*16
complex*32| complex*32
ASIND real real
Arcsine arcsin(x) ASIND DASIND |1 double double
QASIND real*16 real*16
complex*32| complex*32
ACOSD real real
QCOsD complex*32| complex*32
Arc-cosine ACOSD 1 double double
DACOS real*16 real*16
D complex*32| complex*32
QACOS
D
ATAND real real
Arctangent |arctan(x) ATAND 1 double double
DATAND real*16 real*16
complex*32| complex*32
QATAND,
ATAN2D real real
DATANZ2 double double
arctan(x1-x2) |ATAN2D | XATANZR222 real*16 real*16
QATANZ real*16 real*16
complex*32| complex*32

Intel Fortran Compiler Key Files

Key Files Summary for IA-32 Compiler

The following tables list and briefly describe files that are installed for use by the IA-32 version of

the compiler.

/bin Files

File Description

f 90com Executable used by the compiler
fpp Fortran preprocessor

i fc Intel® Fortran Compiler

209

Configuration file for use from command line

ifc.cfg
. Default program catalog list of wor k. pc files to
i fc.pcl
search for module references
i fccem FCE Manager Utility

i fcvars. csh

Environment variables header file

Batch file to set environment variables

i fcvars. sh

pr of mer ge Utility used for Profile Guided Optimizations

pr of or der Utility used for Profile Guided Optimizations

Xi ar Tool used for final interprocedural compilation prior to
archiving.

xild Tool used for Interprocedural Optimizations

/lib Files

File Description

l'i bbi ndf 90. a Library of Binder utilities

li bcepcf 90. a Fortran 1/O library to coexist with C

| i bcepcf 90. so

Shared Fortran 1/O library to coexist with C

C++ standard language library

lincprts.a

lincprts. so Shared C++ standard language library

li bcxa. a C++ language library indicating 1/0 data location
l'i bexa. so ﬁ)r;gﬁaodnCH language library indicating I/O data
i bf90. a Intel-specific Fortran runtime library

i bf90. a Shared Intel-specific Fortran runtime library

| i bgui de. a OpenMP library

i bgui de. so Shared OpenMP library

li bi epcf 90. a Intel-specific Fortran runtime 1/O library

i bi epcf 90. s0 Shared Intel-specific Fortran runtime 1/O library

210

l'ibinf.a

Special purpose math library functions, including
some transcendentals, built only for Linux

[ibinf.so

Shared special purpose math library functions,
including some transcendentals, built only for Linux

[ibintrins.a

Intrinsic functions library

[ibintrins.so

Shared intrinsic functions library

Intel-specific library (optimizations)

libirc.a

i Library to resolve references to OpenMP subroutines
| bonpstub. a when OpenMP is not used
| i bpepcf 90. a Portability library

| i bpepcf 90. so

Shared portability library

| i bposf 90. a Posix library

| i bposf 90. a Shared posix library

i bsvrd . a Short-vector math library (used by vectorizer)

i bunwi nd. a Exception handling library to perform stack unwinds

[i bunwi nd. so

Shared version of exception handling library

Key Files Summary for Itanium(TM) Compiler

The following tables list and briefly describe files that are installed for use by the Itanium(TM)

compiler version of the compiler.

/bin Files
File Description
f90com Executable used by the compiler
Fortran preprocessor
f pp prep
ef ¢ Intel® Fortran Compiler
efc.cfg Configuration file for use from command line
ef c. pcl Default list of work.pc files to search for Fortran
P module references
ef ccem FCE Manager Utility

211

ef cvars. csh

Environment variables header file

ef cvars. sh

Batch file to set environment variables

Utility used for Profile Guided Optimizations

pr of mer ge

pr of or der Utility used for Profile Guided Optimizations

Xi ar Tool used for final interprocedural compilation prior to
archiving.

xild Tool used for Interprocedural Optimizations

/lib Files

File Description

i basnutils. so

Library of Intel Itanium Assembler utilities

| i bcepcf 90. a

Fortran 1/O library to coexist with C

| i bcepcf 90. so

Shared Fortran 1/O library to coexist with C

C++ standard language library

libcprts.a

li bcprts. so Shared C++ standard language library

| i bcxa. a C++ language library indicating 1/0 data location

| i bcxa. so ﬁ)f(l:gﬁeodnCH language library indicating I/O data

| i bdecei a. a Assembler decoder library for IA-32 instructions on

[tanium processor.

| i bdecei a. so

Shared assembler decoder library for IA-32
instructions on Itanium processor.

Assembler decoder library for Itanium processor.

| i bdecem a
. Shared assembler decoder library for Itanium

| i bdecem so DroCessor.

| i bdecenss. a Assembler decoder library for Pentium® 4 processor.
. Shared assembler decoder library for Pentium® 4

| i bdecen68. so Drocessor.

li bdi sei a. a Disassembly library for IA-32 instructions on Itanium

processor.

i bdi sei a. so

Shared disassembly library for IA-32 instructions on
Itanium processor..

i bdi sem a

Disassembly library for Itanium processor.

212

Shared disassembly library for Itanium processor..

l'i bdi sem so

| i bdi sp68. a Disassembly library for Pentium 4 processor.

| i bdi sp68. so Shared disassembly library for Pentium 4 processor.
| i bencei a. a Assembler encoder library for IA-32 instructions on

[tanium processor.

| i bencei a. so

Shared assembler encoder library for 1A-32
instructions on Itanium processor.

Assembler encoder library for Itanium processor.

| i bencem a

l'i bencem so Srrz)ireesdsgisembler encoder library for Itanium

i bencp68. a Assembler encoder library for Pentium 4 processor.
| i bencp68. so Srrz)ireesdsgfsembler encoder library for Pentium 4

i bf90. a Intel-specific Fortran run-time library

l'i bf 90. so Shared Intel-specific Fortran run-time library

|i bf pel . a Floating point emulation assembly library.

| i bgui de. a OpenMP library

i bgui de. so Shared OpenMP library

libiel a Integer emulation assembly library.

i bi epcf 90. a Intel-specific Fortran 1/O library

li bi epcf 90. s0 Shared Intel-specific Fortran 1/O library
libiline. so Assembly library.

libinf.a Intel special purpose math library functions, including

some transcendentals.

[ibintrins.a

Intrinsic functions library

[ibintrins.so

Shared intrinsic functions library

Intel-specific library (optimizations)

libirc.a
li bm a Math library compatible with GNU.
i bnofl . a Multiple Object Format Library, used by the Intel

assembler

213

Shared Multiple Object Format Library, used by the
Intel assembler

Portability library

[i bnofl . so

| i bpepcf 90. a

| i bpepcf 90. so Shared portability library

| i bposf 90. a Posix library

| i bposf 90. so Shared posix library

l'i bsched. so Shared assembly scheduling library

| i bsyndbg. so Shared assembly symbolic debugger library

Assembly decoder exception handling library to
perform stack unwinds

Shared assembly decoder exception handling library to
perform stack unwinds

Exception handling library to perform stack unwinds

| i bunwdecem a

[i bunwdecem so

i bunwi nd. a

Shared exception handling library to perform stack
unwinds

Assembly virtual register allocation library

[i bunwi nd. so

i bvral.so

Lists of Error Messages

Error Message Lists Overview

This section provides lists of error messages generated during compilation phases or reporting
program error conditions. It includes the error messages for the following areas:

* runtime

= allocation

= input-output

= intrinsic procedures
= mathematical

= exceptions

Runtime Errors (IA-32 Only)

These errors are caused by an invalid run-time operation. Following the message, a post-mortem
report is printed if any of the compile-time options - C, -CA, -CB, -CS, -CU, -CVor
- d{ n} was selected.

Error |Option(s) Message
Required
401 _cuU Unassigned variable

214

404 none Assigned label is not in specified list
405 none Integer is not assigned with a format label
406 _CB Array bounds exceeded
439 none nth argument is not present
440 none Inconsistent lengths in a pointer assignment
442 none Inconsistent length for CHARACTER pointer function
*447 . CS Invalid DI Margument to LBOUND
*448 . CS Invalid DI Margument to UBOUND
*449 . CS Invalid DI Margument to SI ZE
451 none Procedure is a BLOCKDATA
454 - CS Array shape mismatch
455 _CB Array section bounds inconsistent with parent array
456 _CB Invalid char act er substring ending position
457 _CB Invalid char act er substring ending position
458 none Object not allocated
459 _CA Array not allocated
460 _CA Pointer not allocated
461 _CA -CU Pointer is undefined
462 _CA Assumed-shape array is not allocated
463 _CA Assumed-shape array is undefined
464 none Inconsistent lengths in a char act er array constructor
441 - CV
443 - CV
444 - CV
480- CV
481- CV
441 ey, Inconsistent length for CHARACTER pointer argument
argument-name
443 ey, Inconsistent length for CHARACTER argument
444 ey, Inconsistent length for CHARACTER function
480 oV Too many arguments specified

215

481 oY Not enough arguments specified

482 oV Incorrect interface block

*483 oY Interface block required for subprogram-name
*484 oY name is not a type-kind function-subroutine
485 oY, Argument type mismatch

486 oV Array rank mismatch

*These errors are followed by additional information, as appropriate:

= Nth dummy argument is not an actual-argument-type

= typel actual argument passed tot ype2 dummy argument N

= type actual argument passed to cray-pointer dummy argument N

= Cray-pointer actual argument passed to type dummy argument N

= Nth dummy argument is [not] a cray-pointer

= Nth actual argument is not compatible with type RECORD

= nane is [not] a pointer-valued function

= Nth dummy argument is [not] a pointer

= nane is [not] a dynamic CHARACTER function

= Nth dummy argument is [not] optional

= Nth dummy argument is [not] an assumed-shape array

= nane is [not] an array-valued function

= Nth dummy argument is an array but the actual argument is a scalar
= Nth dummy argument is a scalar but the actual argument is an array
= The actual rank (X) of name does not match the declared rank (y)

= The data type of nhame does not match its declared type

= Nth dummy argument and the actual argument are different data types
= Nth actual argument passed to Fortran subprogram using %/AL

= Nth actual argument passed to Fortran subprogram using UREF

Allocation Errors

The following errors can arise during allocation or deallocation of data space.

If the relevant ALLOCATE or DEALLOCATE includes a STAT = speci fi er,thenan
occurrence of any of the errors below will cause the STAT variable to become defined with the
corresponding error number, instead of the error message being produced.

In the error messages, vart ype is

arra a pointer to an array, an allocatable array, or a
y temporary array
a pointer to a character scalar, an automatic character
charact er scalar, or a temporary character scalar
scal ar
. a pointer to a non-character scalar
poi nt er P

216

Error

Message

491

vart ype is already allocated.

492

vart ype is not allocated.

493

vart ype was not created by ALLOCATE.

494

or

or

or

or

Allocation of NNN bytes failed

Allocation of array with extent nnn failed

Allocation of array with element size nnn failed

Allocation of character scalar with element size Nnn failed

Allocation of pointer with element size NNnN failed.

495

Heap initialization failed.

Input/Output Errors

The number and text of each input-output error message is given below, with the context in which
it could occur and an explanation of the fault which has occurred. If the input-output statement
includes an | OSTAT=STAT specifier, then an occurrence of any of the errors that follow will
cause the STAT variable to become defined with the corresponding error number.

READ, WRITE

Error |[Message Where Description
Occurring
117 Unit not OPEN An attempt was made to read or write to a closed
connected unit.
118 File already OPEN An attempt was made to OPEN a file on one unit
connected while it was still connected to another.
119 ACCESS conflict|OPEN, Positional, (When a file is to be connected to a unit to which it is

already connected, then only the BLANK, DELIM,
ERR, IOSTAT and PAD specifiers may be redefined.
An attempt has been made to redefine the ACCESS
specifier. This message is also used if an attempt is
made to use a direct-access I/O statement on a unit
which is connected for sequential 1/0 or a sequential
I/O statement on a unit connected for direct access
I/0.

120

RECL conflict

OPEN

When a file is to be connected to a unit to which it is
already connected, then only the BLANK, DELIM,
ERR, IOSTAT and PAD specifiers may be redefined.
An attempt has been made to redefine the RECL
specifier.

121

FORM conflict

OPEN

When a file is to be connected to a unit to which it is
already connected, then only the BLANK, DELIM,
ERR, IOSTAT and PAD specifiers may be redefined.
An attempt has been made to redefine the FORM
specifier.

122

STATUS conflict

OPEN

When a file is to be connected to a unit to which it is
already connected, then only the BLANK, DELIM,
ERR, IOSTAT and PAD specifier may be redefined.
An attempt has been made to redefine the STATUS
specifier.

217

123 Invalid STATUS |CLOSE STATUS=DELETE has been specified in a CLOSE
statement for a unit which has no write permissions;
for example, the unit has been opened with the
READONLY specifier.

125 Specifier not OPEN A specifier value defined by the user has not been

recognized recognized.

126 Specifiers OPEN Within an OPEN statement one of the following

inconsistent invalid combinations of specifiers was defined by the
user:
ACCESS=DIRECT was specified when
STATUS=APPEND
BLANK=FORMATTED was specified when FORM=
UNFORMATTED

127 Invalid RECL OPEN, DEFINE |The value of the RECL specifier was not a positive

value FILE integer.

128 Invalid filename |[INQUIRE The name of the file in an Inquire by file statement is
not a valid filename.

129 No filename OPEN In an OPEN statement, the STATUS specifier was

specified not SCRATCH or UNKNOWN and no filename was
defined.

130 Record length |OPEN The RECL specifier was not defined although

not specified ACCESS=DIRECT was specified.
131 An equals Namelist READ A variable name, array element or character
expected substring reference in the input was not followed by
an ‘="
132 Value separator |List-Directed A complex or literal constant in the input stream was
missing READ, Namelist |not terminated by a delimiter (that is, by a space, a
READ comma or a record boundary).
133 Value separator |Namelist READ A subscript value in a character substring or array
expected element reference in the input was not followed by a
comma or close bracket.

134 Invalid scaling |WRITE with If d represents the decimal field of a format descriptor

FORMAT and k represents the current scale factor, then the
ANSI Standard requires that the relationship -
d<k<d+2 is true when an E or D format code is used
with a WRITE statement. This requirement has been
violated.

135 Invalid logical Formatted READ |A logical value in the input stream was syntactically

value incorrect.

136 Invalid character |[Namelist READ A character constant does not begin with a quote

value character.

137 Value not List-Directed An item in the input stream was not recognized.

recognized READ, Namelist

READ

138 Invalid repetition |List-Directed The value of a repetition factor found in the input

value READ, Namelist |stream is not a positive integer constant.

READ

139 Illegal repetition |List-Directed A repetition factor in the input stream was

factor READ, Namelist |immediately followed by another repetition factor.

READ

140 Invalid integer |Formatted READ [The current input field contained a real number when

218

an integer was expected.

141 Invalid real Formatted READ |The current input field contained a real number which
was syntactically incorrect.

143 Invalid complex |List-Directed The current input field contained a complex number

constant READ, Namelist |which was syntactically incorrect.
READ

144 Invalid subscript |Namelist READ A subscript value in an array element reference in the
input was not a valid integer.

145 Invalid substring [Namelist READ A subscript value in a character substring reference
was not a valid integer or was not positive.

146 Variable notin |Namelist READ The data contained an assignment to a variable

Namelist which is not in the NAMELIST list.

147 Variable not an |Namelist READ A variable name in the data was followed by an open
array bracket but the name is not an array or character

variable.

148 Invalid character [Formatted READ |A character has been found in the current input
stream which cannot syntactically be part of the entity
being assembled.

149 Invalid Namelist |Namelist READ The first character of a record read by a Namelist

input READstatement was not a space.

150 Literal not List-Directed A literal constant in the input file was not terminated
terminated READ, Namelist |by a closing quote before the end of the file.

READ

151 A variable name |Namelist READ A list of array or array element values in the data
expected contained too many values for the associated

variable.

152 File does not OPEN An attempt has been made to open a file which does
exist not exist with STATUS=0LD.

153 Input file ended |READ All the data in the associated internal or external file

has been read.

154 Wrong length READ, WRITE The record length as defined by a FORMAT
record statement, or implied by an unformatted READ or

WRITE, exceeds the defined maximum for the
current input or output file.

155 Incompatible READ/WRITE with|A format description was found to be incompatible
format descriptor|FORMAT with the corresponding item in the I-O list.

156 READ after READ An attempt has been made to read a record from a
WRITE sequential file after a WRITE statement.

158 Record number |Direct Access The record number in a direct-access I-O statement
out of range READ/WRITE, is not a positive value, or, when reading, is beyond

FIND the end of the file.

159 No format READ/WRITE with|No corresponding format code exists in a FORMAT
descriptor for FORMAT statement for an item in the I-O list of a READ or
data item WRITE statement.

160 READ after READ An attempt has been made to read a record from a
Endfile sequential file which is positioned at ENDFILE.

161 WRITE operation\ WRITE After repeated retries WRITE(2) could not
failed successfully complete an output operation. This may

occur if a signal to be caught interrupts output to a
slow device

162 No WRITE WRITE An attempt has been made to write to a file which is

219

permission

defined for input only.

163 Unit not defined |[FIND The unit specified by a FIND statement is not open.

or connected The unit should first be defined by a DEFINE FILE
statement, or should be connected by some other
means.

164 Invalid channel |Any I-O Operation [The unit specified in an 1/O statement is a negative
number value.

166 Unit already DEFINE FILE The unit specified in a DEFINE FILE statement is
connected already open.

167 Unit already DEFINE FILE, The same unit has already been specified by a
defined OPEN previous DEFINE FILE statement.

168 File already OPEN An attempt has been made to OPEN an existing file
exists with STATUS=NEW.

169 Output file READ, WRITE An attempt has been made to write to an internal or
capacity external file beyond its maximum capacity.
exceeded

171 Invalid operation |Positional, READ, |An I/O request was not consistent with the file
on file WRITE definition; for example, attempting a BACKSPACE on

a unit that is connected to the screen.

172 various READ, WRITE An unexpected error was returned by READ?2 - the
error text will be the NT* message associated with
the failure.

173 various READ, WRITE An unexpected error was returned by WRITE- the
error text will be the LINUX* message associated
with the failure.

174 various READ, WRITE An unexpected error was returned by LSEEK - the
error text will be the LINUX message associated with
the failure.

175 |various OPEN, CLOSE |An unexpected error was returned by UNLINK - the
error text will be the LINUX message associated with
the failure.

176 |various OPEN, CLOSE |An unexpected error was returned by CLOSE- the
error text will be the LINUX message associated with
the failure.

177 various OPEN An unexpected error was returned by CREAT - the
error text will be the LINUX message associated with
the failure.

178 |various OPEN An unexpected error was returned by OPEN- the
error text will be the LINUX message associated with
the failure.

181 Substring out of |Namelist READ A character substring reference in the input data lay

range beyond the bounds of the character variable.

182 Invalid variable |[Namelist READ A name in the data was not a valid variable name.
name

185 Too many values|Namelist READ A repetition factor (of the form r*c) exceeded the

specified number of elements remaining unassigned in either
an array or array element reference.

186 Not enough Namelist READ An array element reference contained fewer
subscripts specified subscripts than are associated with the array.

187 Too many Namelist READ An array element reference contained more
subscripts specified subscripts than are associated with the array.

220

188 Value out of Formatted READ |During numeric conversion from character to binary
range form a value in the input record was outside the
range associated with the corresponding 1-O item.
190 File not suitable |OPEN A file which can only support sequential file
operations has been opened for direct access I-O.
191 Workspace OPEN Workspace for internal tables has been exhausted.
exhausted
192 Record too long |READ The length of the current record is greater than that
permitted for the file as defined by the RECL=
specifier in the OPEN statement
193 Not connected |Unformatted An attempt has been made to access a formatted file
for unformatted |- READ/WRITE with an unformatted I-O statement.
o]
194 Not connected |Formatted An attempt has been made to access an unformatted
for formatted READ/WRITE file with a formatted I-O statement.
I-O
195 Backspace not |BACKSPACE An attempt was made to BACKSPACE a file which
permitted contains records written by a list-directed output
statement; this is prohibited by the ANSI Standard.
199 Field too large |List-Directed An item in the input stream was found to be more
READ, Namelist |than 1024 characters long (this does not apply to
READ literal constants).
203 POSITION OPEN When a file is to be connected to a unit to which it is
conflict already connected, then only the BLANK, DELIM,
ERR, IOSTAT and PAD specifiers may be redefined.
An attempt has been made to redefine the POSITION
specifier.
204 ACTION conflict |OPEN When a file is to be connected to a unit to which it is
already connected, then only the BLANK, DELIM,
ERR, IOSTAT and PAD specifiers may be redefined.
An attempt has been made to redefine the ACTION
specifier.
205 No read READ An attempt has been made to READfrom a unit which
permission was OPENed with ACTION="WRITE".
206 Zero stride Namelist READ An array subsection reference cannot have a stride of
invalid zero.
208 Incorrect array |Namelist READ An array subsection triplet has been input incorrectly.
triplet syntax
209 Name not a Namelist READ A name in the data which is not a derived type has
derived type been followed by a ‘%'
210 Invalid Namelist READ A derived type reference has not been followed by an
component ‘=
name
211 Component Namelist READ A ‘%’ must be followed by a component hame in a
name expected derived type reference.
212 Name not in Namelist READ A component is not in this derived type.
derived type
213 Only one Namelist READ In a derived-type reference, only the derived type or

component may
be array-valued

one of its components may be an array or an array
subsection.

221

214

Object not
allocated

READ/ WVRI TE

An item has been used which is either an unallocated
allocatable array or a pointer which has been
disassociated.

Little-Big Endian Conversion Errors

Error Message Where Occurring |Description

215 Conversion of Conversion of derived data types is disabled if
derived data READ/ VRI TE READ/WRITE statement refers to derived data type.
types is disabled (This error is fatal.)

216 lInternal Error! Unknown data size. Fatal error. Contact Intel.
Unknown data READ/ VRI TE
size
| | i

217 lInternal Error! READ/ WRI TE Conversion buffer too small. Fatal error. Contact Intel.

Conversion
buffer too small

Other Errors Reported by 1/0 statements

Errors 101-107 arise from faults in run-time formats:

Error Message

101 Syntax error in format

102 Format is incomplete

103 A positive value is required here

104 Minimum number of digits exceeds width

105 Number of decimal places exceeds width

106 Format integer constants > 32767 are not
supported

107 Invalid H edit descriptor

Notes

* The I/O statements OPEN, CLOSE and | NQUI RE are classified as Auxiliary I/0O
statements. The 1/0 statements REW ND, ENDFI LE and BACKSPACE are classified as
Positional 1/0 statements.

= Thel OSTAT = vari abl e is set to -1 if an end-of-file condition occurs, to -2 if an end-of-
record condition occurs (in a non-advancing READ), to the error number if one of the listed
errors occurs, and to O if no error occurs.

= Should no input/output specifier relating to the type of the occurring input/output error be
given (END=, EOR=, ERR= or | OSTAT=, as appropriate), then the input/output error will
terminate the user program. All units which are currently opened will be closed, and the
appropriate error message will be output on Standard Error followed (if requested) by a
postmortem report (see Runtime Diagnostics).

= The form of an input/output error message is presented in the table below.

I/0O Error NNN Text of message

In Procedure : Procedure name

At Line : Lline number

Statement : I/O statement type

Unit : Unit identifier or Internal File
Connected To : Ffile name

222

Form : Formatted, Unformatted or Print

Access : Sequential or Direct

Nextrec : Record number

Records Read : Number of records input

Records Written : Number of records output

Current 1/O Buffer : Snapshot of the current record with a pointer to
the current position

FJ Note

Only as much information as is available or pertinent will be displayed.

Intrinsic Procedure Errors

The following error messages, which are unnumbered, are generated when incorrect arguments
are specified to the Intel® Fortran Compiler intrinsic procedures, and option - CS was selected at
compile-time. The messages are given in alphabetic order.

Each message is preceded by a line of the form:
ERROR cal ling the intrinsic subprogram nane:

where name is the name of the intrinsic procedure called. The term "integer" indicates
I Nt eger format of an argument.

List of Intrinsic Errors

Argument i Nt eger of the intrinsic function name has string length i Nt eger . It should have
string length at least i nt eger .

Argument i Nt eger of the intrinsic function name is arank i Nt eger array. It should be a
rank I Nt eger array.

Argument i Nt eger of the intrinsic function name is an array with i Nt eger elements. It
should be an array with at least i Nt eger elements.

Argument nane has the value i Nt eger and argument namne has the value i Nt eger . Both
arguments should have non-negative values and their sum should be less than or equal to

I nt eger.

Array argument NaIe has size i Nt eger . It should have size int | nt eger .

Array arguments nanel and nane2 should have the same shape.

The shape of argument nanel is: (i nt eger, i nteger,..., i nteger).
The shape of argument nane?2 is: (i nt eger, i nteger,..., i nteger).
At least one of the array arguments should have r ank = 2

The extent of the last dimension of MATRI X_Alisi nt eger . The extent of the first dimension
of MATRI X Bisi nt eger . These values should be equal.

The DI Mparameter had a value of i Nt eger . Its value should be i nt eger .
The DI Mparameter had a value of i Nt eger . Its value should be at least integer and no larger

than i nt eger .

The nane array has shape: (i nt eger, i nt eger,..., i nt eger).
The shape of namne should be: (i nt eger, i nteger,..., i nteger).

223

The NCOPI ES argument has a value of i nt eger . NCOPI ES should be non-negative.

The ORDER argument should be a permutation of the i nt eger 1 toi nt eger.
The contents of the ORDER argument array is: (i Nt eger, i nteger,..., i nt eger).

The rank of the RESULT array should be equal to the size of the SHAPE array.
The rank of the RESULT array is i nt eger . The size of the i Nt eger arrayisi nt eger .

The RESULT array has shape: (i nt eger, i nt eger,..., i nteger).
The shape of the RESULT array should be: (i nt eger, i nteger,..., i nteger).

The RESULT array has size | nt eger . It should have size | nt eger .
The RESULT character string has length i nt eger . It should have length i nt eger .

The SHAPE argument has size i nt eger .
Its size should be at least i Nt eger and no larger than i nt eger .

= The SHAPE argument should have only non-negative elements.

= The contents of the SHAPE array is: (i nt eger, i nt eger,..., i nt eger).
= The S| ZE argument has a value i nt eger . Its value should be non-negative.
= The size of the SOURCE array should be at least | nt eger .

= The size of the SOURCE array is | nt eger .

= When setting seeds with the intrinsic function name, the first seed must be at least
I Nt eger and not more than I Nt eger , and the second seed must be at least | Nt eger
and not more than I nt eger .

Mathematical Errors

This section lists the errors that can be reported as a consequence of using an intrinsic function
or the exponentiation operator * *

If any of the errors below is reported, the user program will terminate. A postmortem report (see
Runtime Diagnostics) will be output if the program was compiled with the option - d{ n} . All
input-output units which are open will be closed.

The number and text of mathematical errors are:

Error |Message

16 Negative DOUBLE PRECI SI ON value raised to a non-integer power

17 DOUBLE PRECI SI ON zero raised to non-positive power

22 REAL zero raised to non-positive power

23 Negative REAL value raised to a non-integer power

24 REAL value raised to too large a REAL power

38 | NTEGER raised to negative | NTEGER power

39 | NTEGER zero raised to non-positive power

40 | NTEGERto | NTEGER power overflows

46 DOUBLE PRECI SI ON value raised to too large a DOUBLE
PRECI SI ON power

47 COMPLEX zero raised to non-positive | NTEGER power

Exception Messages

The following messages, which are unnumbered, are a selection of those which can be
generated by exceptions (signals). They indicate that a hardware-detected or an asynchronous
error has occurred. Note that you can obtain a postmortem report when an exception occurs by
compiling with the - d{ n} option.

224

The occurrence of an exception usually indicates that the Fortran program is faulty.

Message

Comment

*QUIT signal **

Program aborted by the user typing */ (ctrl + /)

**11 egal
I nstructi on**

May be indicative of a bad call on a function that is
defined to return a derived type result: either the sizes of
the expected and actual results do not correspond, or the
function has not been called as a derived type function.

**Al'i gnment

Access was attempted to a variable which is not aligned
on an address boundary appropriate to its type; this

Error**
could occur, for example, when a formal double-
precision type variable is aligned on a single word
boundary.
** Addr ess Usually caused by a wrong _/a_lue being u_sed as an
Error** **Bus address (check the associativity of all pointers).
Error**

225

